4,335 research outputs found
Boolean versus continuous dynamics on simple two-gene modules
We investigate the dynamical behavior of simple modules composed of two genes
with two or three regulating connections. Continuous dynamics for mRNA and
protein concentrations is compared to a Boolean model for gene activity. Using
a generalized method, we study within a single framework different continuous
models and different types of regulatory functions, and establish conditions
under which the system can display stable oscillations. These conditions
concern the time scales, the degree of cooperativity of the regulating
interactions, and the signs of the interactions. Not all models that show
oscillations under Boolean dynamics can have oscillations under continuous
dynamics, and vice versa.Comment: 8 pages, 10 figure
Eccentric double white dwarfs as LISA sources in globular clusters
We consider the formation of double white dwarfs (DWDs) through dynamical
interactions in globular clusters. Such interactions can give rise to eccentric
DWDs, in contrast to the exclusively circular population expected to form in
the Galactic disk. We show that for a 5-year Laser Interferometer Space Antenna
(LISA) mission and distances as far as the Large Magellanic Cloud, multiple
harmonics from eccentric DWDs can be detected at a signal-to-noise ratio higher
than 8 for at least a handful of eccentric DWDs, given their formation rate and
typical lifetimes estimated from current cluster simulations. Consequently the
association of eccentricity with stellar-mass LISA sources does not uniquely
involve neutron stars, as is usually assumed. Due to the difficulty of
detecting (eccentric) DWDs with present and planned electromagnetic
observatories, LISA could provide unique dynamical identifications of these
systems in globular clusters.Comment: Published in ApJ 665, L5
Constant amplitude and post-overload fatigue crack growth behavior in PM aluminum alloy AA 8009
A recently developed, rapidly solidified, powder metallurgy, dispersion strengthened aluminum alloy, AA 8009, was fatigue tested at room temperature in lab air. Constant amplitude/constant delta kappa and single spike overload conditions were examined. High fatigue crack growth rates and low crack closure levels compared to typical ingot metallurgy aluminum alloys were observed. It was proposed that minimal crack roughness, crack path deflection, and limited slip reversibility, resulting from ultra-fine microstructure, were responsible for the relatively poor da/dN-delta kappa performance of AA 8009 as compared to that of typical IM aluminum alloys
Numerical Simulations of Magnetoacoustic-Gravity Waves in the Solar Atmosphere
We investigate the excitation of magnetoacoustic-gravity waves generated from
localized pulses in the gas pressure as well as in vertical component of
velocity. These pulses are initially launched at the top of the solar
photosphere that is permeated by a weak magnetic field. We investigate three
different configurations of the background magnetic field lines: horizontal,
vertical and oblique to the gravitational force. We numerically model
magnetoacoustic-gravity waves by implementing a realistic (VAL-C) model of
solar temperature. We solve two-dimensional ideal magnetohydrodynamic equations
numerically with the use of the FLASH code to simulate the dynamics of the
lower solar atmosphere. The initial pulses result in shocks at higher
altitudes. Our numerical simulations reveal that a small-amplitude initial
pulse can produce magnetoacoustic-gravity waves, which are later reflected from
the transition region due to the large temperature gradient. The atmospheric
cavities in the lower solar atmosphere are found to be the ideal places that
may act as a resonator for various oscillations, including their trapping and
leakage into the higher atmosphere. Our numerical simulations successfully
model the excitation of such wave modes, their reflection and trapping, as well
as the associated plasma dynamics
An integrated pharmacophore/docking/3D-QSAR approach to screening a large library of products in search of future botulinum neurotoxin a inhibitors
Botulinum toxins are neurotoxins produced by Clostridium botulinum. This toxin can be lethal for humans as a cause of botulism; however, in small doses, the same toxin is used to treat different conditions. Even if the therapeutic doses are effective and safe, the adverse reactions could be local and could unmask a subclinical impairment of neuromuscular transmissions. There are not many cases of adverse events in the literature; however, it is possible that sometimes they do not occur as they are transient and, if they do occur, there is no possibility of a cure other than to wait for the pharmacological effect to end. Inhibition of botulinum neurotoxin type A (BoNT/A) effects is a strategy for treating botulism as it can provide an effective post-exposure remedy. In this paper, 13,592,287 compounds were screened through a pharmacophore filter, a 3D-QSAR model, and a virtual screening; then, the compounds with the best affinity were selected. Molecular dynamics simulation studies on the first four compounds predicted to be the most active were conducted to verify that the poses foreseen by the docking were stable. This approach allowed us to identify compounds with a calculated inhibitory activity in the range of 316–500 nM
The clustering of polarity reversals of the geomagnetic field
Often in nature the temporal distribution of inhomogeneous stochastic point
processes can be modeled as a realization of renewal Poisson processes with a
variable rate. Here we investigate one of the classical examples, namely the
temporal distribution of polarity reversals of the geomagnetic field. In spite
of the commonly used underlying hypothesis, we show that this process strongly
departs from a Poisson statistics, the origin of this failure stemming from the
presence of temporal clustering. We find that a Levy statistics is able to
reproduce paleomagnetic data, thus suggesting the presence of long-range
correlations in the underlying dynamo process.Comment: 4 pages, in press on PRL (31 march 2006?
Observing the dynamics of super-massive black hole binaries with Pulsar Timing Arrays
Pulsar Timing Arrays are a prime tool to study unexplored astrophysical
regimes with gravitational waves. Here we show that the detection of
gravitational radiation from individually resolvable super-massive black hole
binary systems can yield direct information about the masses and spins of the
black holes, provided that the gravitational-wave induced timing fluctuations
both at the pulsar and at the Earth are detected. This in turn provides a map
of the non-linear dynamics of the gravitational field and a new avenue to
tackle open problems in astrophysics connected to the formation and evolution
of super-massive black holes. We discuss the potential, the challenges and the
limitations of these observations.Comment: 5 pages, 1 figur
- …