211 research outputs found

    Parent\u2019s perception of children\u2019s fear: from FSSC-IT to FSSC-PP

    Get PDF
    Studies involving parents' reports about children's fears and multiple informant comparisons are less extended than investigations on children's self-reporting fear schedules. Starting with the Italian version of FSSC-R, the FSSC-IT, the main aims of this study were to adapt a schedule for parents' perception of their children's fear: the FSSC-Parent Perception. Its psychometric properties were examined in a large sample of parents (N = 2970) of children aged 8-10 years. Exploratory and confirmatory factorial structures were examined and compared with the Italian children's ones. Mother vs. father, children's gender and school age group effects were analyzed. The confirmatory factor analysis confirmed a four correlated factors solution model (Fear of Danger and Death; Fear of Injury and Animals; Fear of Failure and Criticism; Fear of the unknown and Phobic aspects). Some effects related to child gender, age group, mother vs. father, were found. The FSSC-PP properties supported its use by parents to assess their children's fears. A qualitative analysis of the top 10 fears most endorsed by parents will be presented and compared with children's fears. Clinical implications about the quality of parent-child relationships where discussed, comparing mothers and fathers, and parents' perception about daughters' and sons' most endorsed fears

    Toxicity of citrate-capped AuNPs: an in vitro and in vivo assessment

    Get PDF
    In this study, we show that 15 nm citrate-capped AuNPs exert a remarkable toxicity in living systems. The assessment was performed by using well-characterized AuNPs, the combination of in vitro and in vivo models (namely two different cell lines and Drosophila melanogaster), exposure to low dosages of nanoparticles (in the sub-nanomolar concentration range), along with the application of several biological assays to monitor different aspects of the toxic effects, such as viability, genotoxicity, and molecular biomarkers

    Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster

    Get PDF
    Abstract The peculiar physical/chemical characteristics of engineered nanomaterials have led to a rapid increase of nanotechnology-based applications in many fields. However, before exploiting their huge and wide potential, it is necessary to assess their effects upon interaction with living systems. In this context, the screening of nanomaterials to evaluate their possible toxicity and understand the underlying mechanisms currently represents a crucial opportunity to prevent severe harmful effects in the next future. In this work we show the in vivo toxicity of gold nanoparticles (Au NPs) in Drosophila melanogaster , highlighting significant genotoxic effects and, thus, revealing an unsettling aspect of the long-term outcome of the exposure to this nanomaterial. After the treatment with Au NPs, we observed dramatic phenotypic modifications in the subsequent generations of Drosophila , demonstrating their capability to induce mutagenic effects that may be transmitted to the descendants. Noteworthy, we were able to obtain the first nanomaterial-mutated organism, named NM-mut. Although these results sound alarming, they underline the importance of systematic and reliable toxicology characterizations of nanomaterials and the necessity of significant efforts by the nanoscience community in designing and testing suitable nanoscale surface engineering/coating to develop biocompatible nanomaterials with no hazardous effects for human health and environment. From the Clinical Editor While the clinical application of nanomedicine is still in its infancy, the rapid evolution of this field will undoubtedly result in a growing number of clinical trials and eventually in human applications. The interactions of nanoparticles with living organisms determine their toxicity and long-term safety, which must be properly understood prior to large-scale applications are considered. The paper by Dr. Pompa's team is the first ever demonstration of mutagenesis resulting in clearly observable phenotypic alterations and the generation of nano-mutants as a result of exposure to citrate-surfaced gold nanoparticles in drosophila. These groundbreaking results are alarming, but represent a true milestone in nanomedicine and serve as a a reminder and warning about the critical importance of "safety first" in biomedical science

    Impact of nanoscale topography on genomics and proteomics of adherent bacteria.

    Get PDF
    Bacterial adhesion onto inorganic/nanoengineered surfaces is a key issue in biotechnology and medicine, because it is one of the first necessary steps to determine a general pathogenic event. Understanding the molecular mechanisms of bacteria−surface interaction represents a milestone for planning a new generation of devices with unanimously certified antibacterial characteristics. Here, we show how highly controlled nanostructured substrates impact the bacterial behavior in terms of morphological, genomic, and proteomic response. We observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) that type-1 fimbriae typically disappear in Escherichia coli adherent onto nanostructured substrates, as opposed to bacteria onto reference glass or flat gold surfaces. A genetic variation of the fimbrial operon regulation was consistently identified by real time qPCR in bacteria interacting with the nanorough substrates. To gain a deeper insight into the molecular basis of the interaction mechan..

    In Vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster

    Get PDF
    The growing use of nanomaterials in commercial goods and novel technologies is generating increasing questions about possible risks for human health and environment, due to the lack of an in-depth assessment of their potential toxicity. In this context, we investigated the effects of citrate-capped gold nanoparticles (AuNPs) on the model system Drosophila melanogaster upon ingestion. We observed a significant in vivo toxicity of AuNPs, which elicited clear adverse effects in treated organisms, such as a strong reduction of their life span and fertility, presence of DNA fragmentation, as well as a significant overexpression of the stress proteins. Transmission electron microscopy demonstrated the localization of the nanoparticles in tissues of Drosophila. The experimental evidence of high in vivo toxicity of a nanoscale material, which is widely considered to be safe and biocompatible in its bulk form, opens up important questions in many fields, including nanomedicine, material science, health, drug delivery and risk assessment

    Modular plastic chip for one-shot human papillomavirus diagnostic analysis.

    Get PDF
    In this article, we report the design and development of a plastic modular chip suitable for one-shot human papillomavirus (HPV) diagnostics, namely detection of the viral presence and relative genotyping, by two sequential steps performed directly on the same device. The device is composed of two modular and disposable plastic units that can be assembled or used separately. The first module is represented by a polydimethylsiloxane (PDMS) microreactor that is exploited for real-time polymerase chain reaction (PCR) and, thus, is suitable for detecting the presence of virus. The second unit is a PDMS microwell array that allows virus genotyping by a colorimetric assay, based on DNA hybridization technology developed on plastic, requiring simple inspection by the naked eye. The two modules can be easily coupled to reusable hardware, enabling the heating/cooling processes and the real-time detection of HPV. By coupling real-time assay and colorimetric genotyping on the same chip, the assembled device may provide a low-cost tool for HPV diagnostics, thereby favoring the prediction of cancer risk in patients

    Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips

    Get PDF
    We propose a technological approach aimed at improving biochips performances, based on an efficient spectral modeling and enhancement of markers fluorescence through the insertion of photonic crystal nanocavities (PhC-NCs) in the readout area of biochips. This strategy univocally associates a specific emission wavelength to a specific bioprobe immobilized on a nanocavity, therefore guaranteeing parallel detection of multiple elements and faster analysis time. Moreover, PhC-NCs significantly enhance the markers fluorescence, thus improving the detection sensitivity

    Room-temperature metal stamping by microfluidics

    Get PDF
    We show the possibility to fabricate highly controlled metal micropatterns on a variety of substrates, such as semiconducting or metallic materials, exploiting a combination of spontaneous galvanic displacement reactions with microfluidics. The process is reliable and quite versatile and allows the fabrication of complex patterns of different metals on a number of substrates in few minutes on a conventional laboratory bench

    Molecular response of Escherichia coli adhering onto nanoscale topography

    Get PDF
    Bacterial adhesion onto abiotic surfaces is an important issue in biology and medicine since understanding the bases of such interaction represents a crucial aspect in the design of safe implant devices with intrinsic antibacterial characteristics. In this framework, we investigated the effects of nanostructured metal substrates on Escherichia coli adhesion and adaptation in order to understand the bio-molecular dynamics ruling the interactions at the interface. In particular, we show how highly controlled nanostructured gold substrates impact the bacterial behavior in terms of morphological changes and lead to modifications in the expression profile of several genes, which are crucially involved in the stress response and fimbrial synthesis. These results mainly demonstrate that E. coli cells are able to sense even slight changes in surface nanotopography and to actively respond by activating stress-related pathways. At the same time, our findings highlight the possibility of designing nanoengineered substrates able to trigger specific bio-molecular effects, thus opening the perspective of smartly tuning bacterial behavior by biomaterial design
    corecore