4,553 research outputs found

    A Markov Chain Monte Carlo approach to the study of massive black hole binary systems with LISA

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will produce a data stream containing a vast number of overlapping sources: from strong signals generated by the coalescence of massive black hole binary systems to much weaker radiation form sub-stellar mass compact binaries and extreme-mass ratio inspirals. It has been argued that the observation of weak signals could be hampered by the presence of loud ones and that they first need to be removed to allow such observations. Here we consider a different approach in which sources are studied simultaneously within the framework of Bayesian inference. We investigate the simplified case in which the LISA data stream contains radiation from a massive black hole binary system superimposed over a (weaker) quasi-monochromatic waveform generated by a white dwarf binary. We derive the posterior probability density function of the model parameters using an automatic Reversible Jump Markov Chain Monte Carlo algorithm (RJMCMC). We show that the information about the sources and noise are retrieved at the expected level of accuracy without the need of removing the stronger signal. Our analysis suggests that this approach is worth pursuing further and should be considered for the actual analysis of the LISA data.Comment: submitted to cqg as GWDAW-10 conference proceedings, 10 pages, 4 figures, some changes to plots and numerical detail

    LISA Response Function and Parameter Estimation

    Full text link
    We investigate the response function of LISA and consider the adequacy of its commonly used approximation in the high-frequency range of the observational band. We concentrate on monochromatic binary systems, such as white dwarf binaries. We find that above a few mHz the approxmation starts becoming increasingly inaccurate. The transfer function introduces additional amplitude and phase modulations in the measured signal that influence parameter estmation and, if not properly accounted for, lead to losses of signal-to-noise ratio.Comment: 4 pages, 2 figures, amaldi 5 conference proceeding

    Media use during adolescence: the recommendations of the Italian Pediatric Society.

    Get PDF
    BACKGROUND: The use of media device, such as smartphone and tablet, is currently increasing, especially among the youngest. Adolescents spend more and more time with their smartphones consulting social media, mainly Facebook, Instagram and Twitter because. Adolescents often feel the necessity to use a media device as a means to construct a social identity and express themselves. For some children, smartphone ownership starts even sooner as young as 7 yrs, according to internet safety experts. MATERIAL AND METHODS: We analyzed the evidence on media use and its consequences in adolescence. RESULTS: In literature, smartphones and tablets use may negatively influences the psychophysical development of the adolescent, such as learning, sleep and sigh. Moreover, obesity, distraction, addiction, cyberbullism and Hikikomori phenomena are described in adolescents who use media device too frequently. The Italian Pediatric Society provide action-oriented recommendations for families and clinicians to avoid negative outcomes. CONCLUSIONS: Both parents and clinicians should be aware of the widespread phenomenon of media device use among adolescents and try to avoid psychophysical consequences on the youngest

    Spatial and Size Distribution of Red Drum Caught and Released in Tampa Bay, Florida, and Factors Associated with Post-Release Hooking Mortality

    Get PDF
    The recreational fishery for red drum (Sciaenops ocellatus) in Florida is unusual in that most red drum targeted are immature and caught within estuarine waters. Current state regulations rely exclusively on bag and size limits, resulting in the release of a large proportion of captured individuals. This study employed hook-and-line sampling conducted monthly in Tampa Bay, Florida and catch-and-release mortality experiments to determine the spatial and size distribution of red drum and the mortality rate of released fish, respectively. Of the 1,405 red drum collected, more than 70% were smaller than the minimum legal size (457 mm standard length (SL)). Size structure of red drum varied spatially and reflected ontogenetic patterns of habitat use. Data collected during catch-and-release mortality experiments were analyzed to identify factors associated with mortality. A total of 251 red drum (203-618 mm SL) were caught and held for 48 h during 9 experiments, with an overall mortality rate of 5.6%. Higher water temperature and anatomical hook position were significantly correlated with mortality; lip-hooked fish had the lowest mortality rate, while throat-hooked fish had the highest. Although hook type was not correlated with mortality, it did influence whether a fish was deep-hooked. Fish caught by J-hooks were more likely to be deep-hooked than those caught by circle hooks. Catch-and-release fishing is an effective management tool for reducing take but may contribute to short-term mortality, especially in warm, subtropical estuaries

    Parallel algorithm with spectral convergence for nonlinear integro-differential equations

    Get PDF
    We discuss a numerical algorithm for solving nonlinear integro-differential equations, and illustrate our findings for the particular case of Volterra type equations. The algorithm combines a perturbation approach meant to render a linearized version of the problem and a spectral method where unknown functions are expanded in terms of Chebyshev polynomials (El-gendi's method). This approach is shown to be suitable for the calculation of two-point Green functions required in next to leading order studies of time-dependent quantum field theory.Comment: 15 pages, 9 figure

    Clinical correlates of mathematical modeling of cortical spreading depression: Single‐cases study

    Get PDF
    Introduction: Considerable connections between migraine with aura and cortical spreading depression (CSD), a depolarization wave originating in the visual cortex and traveling toward the frontal lobe, lead to the hypothesis that CSD is underlying migraine aura. The highly individual and complex characteristics of the brain cor‐ tex suggest that the geometry might impact the propagation of cortical spreading depression. Methods: In a single‐case study, we simulated the CSD propagation for five migraine with aura patients, matching their symptoms during a migraine attack to the CSD wavefront propagation. This CSD wavefront was simulated on a patient‐specific tri‐ angulated cortical mesh obtained from individual MRI imaging and personalized dif‐ fusivity tensors derived locally from diffusion tensor imaging data. Results: The CSD wave propagation was simulated on both hemispheres, despite in all but one patient the symptoms were attributable to one hemisphere. The CSD wave diffused with a large wavefront toward somatosensory and prefrontal regions, devoted to pain processing. Discussion: This case‐control study suggests that the cortical geometry may con‐ tribute to the modality of CSD evolution and partly to clinical expression of aura symptoms. The simulated CSD is a large and diffuse phenomenon, possibly capa‐ ble to activate trigeminal nociceptors and to involve cortical areas devoted to pain processing

    Observing the dynamics of super-massive black hole binaries with Pulsar Timing Arrays

    Full text link
    Pulsar Timing Arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here we show that the detection of gravitational radiation from individually resolvable super-massive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave induced timing fluctuations both at the pulsar and at the Earth are detected. This in turn provides a map of the non-linear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of super-massive black holes. We discuss the potential, the challenges and the limitations of these observations.Comment: 5 pages, 1 figur
    corecore