5,980 research outputs found

    Studies of waveform requirements for intermediate mass-ratio coalescence searches with advanced detectors

    Full text link
    The coalescence of a stellar-mass compact object into an intermediate-mass black hole (intermediate mass-ratio coalescence; IMRAC) is an important astrophysical source for ground-based gravitational-wave interferometers in the so-called advanced configuration. However, the ability to carry out effective matched-filter based searches for these systems is limited by the lack of reliable waveforms. Here we consider binaries in which the intermediate-mass black hole has mass in the range 24 - 200 solar masses with a stellar-mass companion having masses in the range 1.4 - 18.5 solar masses. In addition, we constrain the mass ratios, q, of the binaries to be in the range 1/140 < q < 1/10 and we restrict our study to the case of circular binaries with non-spinning components. We investigate the relative contribution to the signal-to-noise ratio (SNR) of the three different phases of the coalescence: inspiral, merger and ringdown. We show that merger and ringdown contribute to a substantial fraction of the total SNR over a large portion of the mass parameter space, although in a limited portion the SNR is dominated by the inspiral phase. We further identify three regions in the IMRAC mass-space in which: (i) inspiral-only searches could be performed with losses in detection rates L in the range 10% < L < 27%, (ii) searches based on inspiral-only templates lead to a loss in detection rates in the range 27% < L < 50%$, and (iii) templates that include merger and ringdown are essential to prevent losses in detection rates greater than 50%. We investigate the effectiveness with which the inspiral-only portion of the IMRAC waveform space is covered by comparing several existing waveform families in this regime. Our results reinforce the importance of extensive numerical relativity simulations of IMRACs and the need for further studies of suitable approximation schemes in this mass range.Comment: 10 pages, 3 figure

    A Markov Chain Monte Carlo approach to the study of massive black hole binary systems with LISA

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will produce a data stream containing a vast number of overlapping sources: from strong signals generated by the coalescence of massive black hole binary systems to much weaker radiation form sub-stellar mass compact binaries and extreme-mass ratio inspirals. It has been argued that the observation of weak signals could be hampered by the presence of loud ones and that they first need to be removed to allow such observations. Here we consider a different approach in which sources are studied simultaneously within the framework of Bayesian inference. We investigate the simplified case in which the LISA data stream contains radiation from a massive black hole binary system superimposed over a (weaker) quasi-monochromatic waveform generated by a white dwarf binary. We derive the posterior probability density function of the model parameters using an automatic Reversible Jump Markov Chain Monte Carlo algorithm (RJMCMC). We show that the information about the sources and noise are retrieved at the expected level of accuracy without the need of removing the stronger signal. Our analysis suggests that this approach is worth pursuing further and should be considered for the actual analysis of the LISA data.Comment: submitted to cqg as GWDAW-10 conference proceedings, 10 pages, 4 figures, some changes to plots and numerical detail

    Parent\u2019s perception of children\u2019s fear: from FSSC-IT to FSSC-PP

    Get PDF
    Studies involving parents' reports about children's fears and multiple informant comparisons are less extended than investigations on children's self-reporting fear schedules. Starting with the Italian version of FSSC-R, the FSSC-IT, the main aims of this study were to adapt a schedule for parents' perception of their children's fear: the FSSC-Parent Perception. Its psychometric properties were examined in a large sample of parents (N = 2970) of children aged 8-10 years. Exploratory and confirmatory factorial structures were examined and compared with the Italian children's ones. Mother vs. father, children's gender and school age group effects were analyzed. The confirmatory factor analysis confirmed a four correlated factors solution model (Fear of Danger and Death; Fear of Injury and Animals; Fear of Failure and Criticism; Fear of the unknown and Phobic aspects). Some effects related to child gender, age group, mother vs. father, were found. The FSSC-PP properties supported its use by parents to assess their children's fears. A qualitative analysis of the top 10 fears most endorsed by parents will be presented and compared with children's fears. Clinical implications about the quality of parent-child relationships where discussed, comparing mothers and fathers, and parents' perception about daughters' and sons' most endorsed fears

    A family of filters to search for frequency dependent gravitational wave stochastic backgrounds

    Full text link
    We consider a three dimensional family of filters based on broken power law spectra to search for gravitational wave stochastic backgrounds in the data from Earth-based laser interferometers. We show that such templates produce the necessary fitting factor for a wide class of cosmological backgrounds and astrophysical foregrounds and that the total number of filters required to search for those signals in the data from first generation laser interferometers operating at the design sensitivity is fairly smallComment: 4 pages, 4 figures, uses iopart.cls, accepted for publications on Classical and Quantum Gravity (Special Issue, Proceedings of Amaldi 2003

    Resistance Welding in Steel Mills

    Get PDF

    Recognizable neonatal clinical features of aplasia cutis congenita

    Get PDF
    Background: Aplasia cutis congenita (ACC), classified in nine groups, is likely to be underreported, since milder isolated lesions in wellbeing newborns could often be undetected, and solitary lesions in the context of polymalformative syndromes could not always be reported. Regardless of form and cause, therapeutic options have in common the aim to restore the deficient mechanical and immunological cutaneous protection and to limit the risk of fluid leakage or rupture of the exposed organs. We aimed to review our institutional prevalence, comorbidities, treatment and outcome of newborns with ACC. Methods: We conducted a retrospective study including all newborns affected by ACC and admitted at the University Mother-Child Department from October 2010 to October 2019. Anthropometric and clinical characteristics of ACC1 versus a non-isolated ACC group were analyzed. Results: We encountered 37 newborns, 16 with ACC1 versus 21 with non-isolated ACC. The incidence rate of 0.1% in ACC1 was higher than expected, while 19% of cases showed intrafamilial autosomal dominant transmission. Higher birth weight centile, though lower than reference population, being adequate for gestational age, normal Apgar score and euglycemia characterizing ACC1 resulted associated to a rapid tissue regeneration. Non-isolated ACC, in relation to concomitant congenital anomalies and higher prematurity rate, showed more surgical and medical complications along with the risk of neonatal death. Specifically, newborns with ACC4 were characterized by the frequent necessity of abdominal wall defect repair, responsible for the occurrence of an abdominal compartment syndrome. Conclusion: Prompt carefully assessment of the newborn with ACC in order to exclude concomitant other congenital malformations, provides clues to the underlying pathophysiology, and to the short-term prognosis. Family should be oriented toward identification of other family members affected by similar pathology, while obstetric history should exclude initial multiple pregnancy with death of a co-twin, placental anomalies and drug assumption. Molecular-genetic diagnosis and genetic counseling are integrative in individualized disease approach

    LISA Response Function and Parameter Estimation

    Full text link
    We investigate the response function of LISA and consider the adequacy of its commonly used approximation in the high-frequency range of the observational band. We concentrate on monochromatic binary systems, such as white dwarf binaries. We find that above a few mHz the approxmation starts becoming increasingly inaccurate. The transfer function introduces additional amplitude and phase modulations in the measured signal that influence parameter estmation and, if not properly accounted for, lead to losses of signal-to-noise ratio.Comment: 4 pages, 2 figures, amaldi 5 conference proceeding

    On the Asymptotic Stability of Linear Volterra Difference Equations of Convolution Type

    Get PDF
    We show that the condition |a| + |∑+∞l=0bl| \u3c 1 is not necessary, though sufficient, for the asymptotic stability of xn+1 = axn + ∑+∞l=0bn-lxl. We prove the existence of a class of Volterra difference equations (VDEs) that violate this condition but whose zero solutions are asymptotically stable

    On the Asymptotic Stability of Linear Volterra Difference Equations of Convolution Type

    Get PDF
    We show that the condition |a| + |∑+∞l=0bl| \u3c 1 is not necessary, though sufficient, for the asymptotic stability of xn+1 = axn + ∑+∞l=0bn-lxl. We prove the existence of a class of Volterra difference equations (VDEs) that violate this condition but whose zero solutions are asymptotically stable

    A Contraction Theory Approach to Singularly Perturbed Systems with Application to Retroactivity Attenuation

    Get PDF
    In this paper, we revisit standard results for singularly perturbed systems on the infinite time interval by employing tools from nonlinear contraction theory. This allows us to determine explicit bounds both on the rate of convergence of trajectories to the slow manifold, and on the distance between these trajectories and those of the reduced system. We illustrate the application of the proposed technique to the problem of retroactivity attenuation in biomolecular systems, that is, to the problem of attenuating the effects of output loading due to interconnection to downstream systems. By virtue of the explicit bounds, we can single out the key biochemical parameters to tune in order to enhance retroactivity attenuation. This provides design guidelines for synthetic biology devices that are robust to loading and can function as insulation devices just like insulating amplifiers work in electronics.National Science Foundation (U.S.). Division of Computing and Communication Foundations (NSF-CCF Grant 1058127
    • …
    corecore