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Abstract

We show that the condition |a|+
∣∣∣∑+∞

l=0 bl

∣∣∣ < 1 is not necessary, though sufficient,

for the asymptotic stability of xn+1 = axn +
∑+∞

l=0 bn−lxl. We prove the existence
of a class of Volterra difference equations that violate this condition but whose zero
solutions are asymptotically stable.
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1 Introduction

Let us consider the linear convolution Volterra Difference Equations (VDEs)

xn+1 = axn +
n∑

l=0

bn−lxl, n ≥ 0, (1.1)

where x0 is given and a ∈ IR, and recall the following definitions of stability [8, p.176].

Definition 1 The zero solution of (1.1) is said to be

1. stable if for all ε > 0 there exists δ(ε) > such that |x0| < δ implies |xn| < ε for all
n ≥ 0;

2. asymptotically stable if it is stable and there exists µ such that |x0| < µ implies
limn→+∞xn = 0.

In the last two decades, many authors investigated the asymptotic stability of (1.1) [8,
p.39] and [2, 3, 5, 6, 7, 9, 10, 12] mostly by means of the Z−transform or the Liapunov
approach [8, chap.6]. The earliest thorough study of (1.1) was carried out by Elaydi in [5].
However, the condition he proved, as he himself writes, although necessary and sufficient,
is not “practical” because it requires the localization of the roots of a complex function
related to the Z−transform of the sequence {bn}n≥0 of the coefficients of (1.1).

In the same paper the following explicit criterion for the asymptotic stability of (1.1)
was provided:

Theorem 1.1 [5, 8] Suppose that bn does not change sign for n ≥ 0 and

|a| +
∣∣∣∣∣
+∞∑
l=0

bl

∣∣∣∣∣ < 1, (1.2)

then the zero solution of (1.1) is asymptotically stable.

This is a nice sufficient condition directly expressed in terms of the coefficients of the
VDE considered and, until now, it is still an open question whether or not (1.2) is also
necessary for the asymptotic stability of (1.1) [8, p.296].

The purpose of this paper is to answer this question. Namely, we prove that, starting
from any sequence {βn}n≥0 satisfying (−1)i∆βn ≤ 0, i = 0, 1, 2, we can construct an
infinite number of VDEs of the type (1.1) whose solution is asymptotically stable and
whose coefficients satisfy |a| +

∣∣∑+∞
l=0 bl

∣∣ ≥ 1. Hence, we can conclude that (1.2) is not
necessary.

In the next section we prove our result by effectively constructing a class of asymptot-
ically stable VDEs that volate (1.2).
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2 Stability of VDEs

In this section we describe our result on the stability of the zero solution of (1.1). Since
our approach in the study of the asymptotic properties of xn will go through the Liapunov
technique for VDEs, we refer to [1] and we report here the main result for the general
Volterra difference equation of unbounded order

yn+1 = F (n, y0, . . . , yn), n ≥ 0, yn ∈ IR, (2.1)

with F (n, 0, . . . , 0) = 0.

Theorem 2.1 Let ωi(r), r ∈ IR, i = 1, 2, be scalar continuous increasing functions such
that ωi(0) = 0, i = 1, 2. If there exists a scalar function V (n, y0, . . . , yn), continuous with
respect to all the variables y0, y1, . . . , yn, . . . , such that

a) V (0, 0) = 0

b) V (n, y0, . . . , yn) ≥ ω1(|yn|), n ≥ 0

c) ∆Vn = V (n + 1, y0, . . . , yn, F (n, y0, . . . , yn)) − V (n, y0, . . . , yn) ≤ 0, n ≥ 0

then the solution of (2.1) is stable. If, in addition

d) ∆Vn ≤ −ω2(|yn|)
then the solution of (2.1) is asymptotically stable.

The following theorem shows how to obtain a class of VDEs which is asymptotically stable
even though (1.2) is not satisfied.

Theorem 2.2 Assume there exists a sequence {bn}n∈IN that satisfies

i. (−1)k∆kbn ≤ 0, k = 0, 1, 2, for each n = 0, 1, . . .

ii. b1 − 2b0 − 2 < 0

and one of the following two conditions holds

iii1. b1 + 2b0 + 1 ≥ 0, b1 < 0

iii2. b1 + 4b0 + 2 > 0,

then it is always possible to find a ∈ IR such that |a| + |∑∞
l=0 bl| ≥ 1 and the zero solution

of xn+1 = axn +
∑∞

l=0 bn−lxl is asymptotically stable.

Proof. Let bn be such a sequence and choose a such that

b1 − 2b0 − 2
2

< a ≤ min{−(1 + b0), b1 + b0}. (2.2)
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With this form for bn and the values prescribed in (2.2) for a, it is obvious that |a| +∣∣∑+∞
l=0 bl

∣∣ ≥ 1 and hence (1.2) is not satisfied. Let us consider the Liapunov function

V (n, x0, . . . , xn) = − (bn + aδn,0)

⎛
⎝ n∑

j=0

xj

⎞
⎠

2

+ (b0 + a + 2)x2
n +

n−1∑
i=0

(bn−i − bn−1−i − aδn−1,i)

⎛
⎝ n∑

j=0

xj

⎞
⎠

2

,

(2.3)

where δi,j = 0 if i �= j and δi,i = 1, and set

ω1(y) =(b0 + a + 2)y2

ω2(y) = − (b1 − 2(b0 + a) − 2)y2.
(2.4)

V is continuous with respect to x0, . . . , xn and ω1 and ω2 are continuous. Notice that
from Conditions i and ii, we have b1 > −2. This implies using (2.2) that b0 +a+2 > 0,and
b1 − 2(b0 + a) − 2 < 0. Hence, ω1(y) and ω2(y) in (2.4) are positive increasing functions.
Now we show that V satisfies hypotheses a)-d) of Theorem 2.1.

Of course, it is clear from (2.3) that V (0, 0) = 0 and

V (n, x0, . . . , xn) ≥ ω1(|xn|).

In order to prove that V satisfies c), let us consider

∆Vn = V (n + 1, x0, x1, . . . , xn+1) − V (n, x0, x1, . . . , xn)

= −(bn+1 + aδn+1,0)

⎛
⎝n+1∑

j=0

xj

⎞
⎠

2

+ (b0 + a + 2)x2
n+1

+
n∑

i=0

(bn+1−i − bn−i − aδn,i)

⎛
⎝n+1∑

j=i

xj

⎞
⎠

2

− V (n, x0, . . . , xn)

= −(bn+1 + aδn+1,0)

⎛
⎝
⎛
⎝ n∑

j=0

xj

⎞
⎠

2

+ x2
n+1 + 2xn+1

n∑
j=0

xj

⎞
⎠+ (b0 + a + 2)x2

n+1

+
n∑

i=0

(bn+1−i − bn−i − aδn,i)

⎛
⎝
⎛
⎝ n∑

j=i

xj

⎞
⎠

2

+ x2
n+1 + 2xn+1

n∑
j=i

xj

⎞
⎠

−V (n, x0, x1, . . . , xn), n ≥ 0.
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By manipulating this expression we get:

∆Vn = −(bn+1 + aδn+1,0)

⎛
⎝ n∑

j=0

xj

⎞
⎠

2

− (bn+1 + aδn+1,0)

⎛
⎝x2

n+1 + 2xn+1

n∑
j=0

xj

⎞
⎠

+(b0 + a + 2)x2
n+1 +

n∑
i=0

(bn+1−i − bn−i − aδn,i)x2
n+1

+2xn+1

n∑
i=0

(bn+1−i − bn−i − aδn,i)
n∑

j=i

xj +
n∑

i=0

(bn+1−i − bn−i − aδn,i)

⎛
⎝ n∑

j=i

xj

⎞
⎠

2

+(bn + aδn,0)

⎛
⎝ n∑

j=0

xj

⎞
⎠

2

− (b0 + a + 2)x2
n −

n−1∑
i=0

(bn−i − bn−1−i − aδn−1,i)

⎛
⎝ n∑

j=i

xj

⎞
⎠

2

= Bn − (bn+1 + bn − aδn,0)

⎛
⎝ n∑

j=0

xj

⎞
⎠

2

+
n−1∑
i=0

(bn+1−i − 2bn−i + bn−1−i + aδn−1,i)

⎛
⎝ n∑

j=i

xj

⎞
⎠

2

+ (b1 − 2(b0 + a) − 2)x2
n, n ≥ 0,

where

Bn = 2xn+1

⎛
⎝ n∑

i=0

(bn+1−i − bn−i − aδn,i)
n∑

j=i

xj − (bn+1 + aδn+1,0)
n∑

j=0

xj

⎞
⎠

+x2
n+1

(
−(bn+1 + aδn+1,0) + (b0 + a + 2) +

n∑
i=0

(bn+1−i − bn−i − aδn,i)

)
.

By interchanging the order of summation in
∑n

i=0(bn+1−i−bn−i−aδn,i)
∑n

j=i xj , it is easy
to prove that

Bn = 2xn+1

⎛
⎝ n∑

j=0

xj

(
j∑

i=0

(bn+1−i − bn−i) −
j∑

i=0

aδn,i − bn+1

)⎞
⎠

+x2
n+1

(
−(bn+1 + b0 + a + 2) +

n∑
i=0

(bn+1−i − bn−i) − a

)
,

and by using the fact that
∑j

i=0(bn+1−i − bn−i) = bn+1 − bn−j , it comes out that Bn = 0.
For the other quantities involved in the expression of ∆Vn, we have that

bn+1 + bn − aδn,0 =
{

b1 + b0 − a if n = 0
bn+1 + bn if n > 0

(2.5)

and

bn+1−i − 2bn−i + bn−1−i − aδn−1,i =
{

b2 − 2b1 + b0 + a if i = n − 1
bn+1−i − 2bn−i + bn−1−i otherwise.

(2.6)
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As a consequence of the hypotheses on bn and of our choice (2.2) for a, both (2.5) and
(2.6) are less than or equal to zero. Therefore,

∆Vn ≤ −ω2(|xn|), n = 0, 1, . . . ,

where ω2(| · |) is given in (2.4).
In conclusion, V satisfies all the hypotheses of Theorem 2.1, and consequently, the zero

solution of (1.1) is asymptotically stable. �

Notice that the result in theorem (2.2) is valid subject to the existence of a sequence
bn which satisfies Conditions i, ii, and either iii1 or iii2. The following theorem provides
an algorithm on how to construct such a sequence.

Theorem 2.3 There exists an infinite number of sequences {bn}n∈IN such that

i. (−1)k∆kbn ≤ 0, k = 0, 1, 2, n ≥ 0

ii. b1 − 2b0 − 2 < 0

iii2. b1 + 4b0 + 2 > 0,

hold.

Proof. Let {βn}n∈IN be a sequence whose terms satisfy (−1)k∆kβn ≤ 0, for k = 0, 1, 2

and n ≥ 0 (for instance βn = − 1
2n

). Set bn = − βn

θβ0
where θ > 2 +

β1

β0
. From the

assumptions on βn, it immediately follows that bn ≤ 0, for n ≥ 0, bn − bn−1 ≥ 0 and
bn+1 − 2bn + bn−1 ≤ 0, for all n ≥ 1 and then i. holds. Now consider

b1 − 2b0 − 2 =
−β1 − 2(θ − 1)β0

θβ0

and

b1 + 4b0 + 2 =
−β1 − 2(2 − θ)β0

θβ0
.

Since β0 and β1 are negative and θ > 2 +
β1

β0
, the first expression above is negative, while

the second is positive. Hence, ii. and iii2. hold. The result stated in the theorem is then
proved. �

Example 2.4 It is easy to check that the sequence {bn}n∈IN with bn = −1
3

1
2n

satisfies

the hypotheses of Theorem 2.2. In this case, any a belonging to
(−3

4 ,−2
3

)
leads to the

asymptotic stability of (1.1).
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3 Concluding remarks

In this note we propose a constructive analysis on the asymptotic stability of a class of
VDEs of convolution type. In particular we show the non necessity of condition (1.2) for
the asymptotic stability of (1.1) by proving the existence of infinite sequences {bn}n∈IN

which, for certain values of a, lead to the asymptotic stability of (1.1) and that, all the
same, don’t fulfill (1.2). The problem of finding “easily verifiable” necessary and sufficient
condition for the asymptotic stability of the zero solution of (1.1) remain therefore an open
question!
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