446 research outputs found

    Quadratic transformations of Macdonald and Koornwinder polynomials

    Get PDF
    When one expands a Schur function in terms of the irreducible characters of the symplectic (or orthogonal) group, the coefficient of the trivial character is 0 unless the indexing partition has an appropriate form. A number of q-analogues of this fact were conjectured in math.QA/0112035; the present paper proves most of those conjectures, as well as some new identities suggested by the proof technique. The proof involves showing that a nonsymmetric version of the relevant integral is annihilated by a suitable ideal of the affine Hecke algebra, and that any such annihilated functional satisfies the desired vanishing property. This does not, however, give rise to vanishing identities for the standard nonsymmetric Macdonald and Koornwinder polynomials; we discuss the required modification to these polynomials to support such results.Comment: 32 pages LaTeX, 10 xfig figure

    Deformations of permutation representations of Coxeter groups

    Full text link
    The permutation representation afforded by a Coxeter group W acting on the cosets of a standard parabolic subgroup inherits many nice properties from W such as a shellable Bruhat order and a flat deformation over Z[q] to a representation of the corresponding Hecke algebra. In this paper we define a larger class of ``quasiparabolic" subgroups (more generally, quasiparabolic W-sets), and show that they also inherit these properties. Our motivating example is the action of the symmetric group on fixed-point-free involutions by conjugation.Comment: 44 page

    Quantum algorithms for hidden nonlinear structures

    Full text link
    Attempts to find new quantum algorithms that outperform classical computation have focused primarily on the nonabelian hidden subgroup problem, which generalizes the central problem solved by Shor's factoring algorithm. We suggest an alternative generalization, namely to problems of finding hidden nonlinear structures over finite fields. We give examples of two such problems that can be solved efficiently by a quantum computer, but not by a classical computer. We also give some positive results on the quantum query complexity of finding hidden nonlinear structures.Comment: 13 page

    The quantum communication complexity of sampling

    Get PDF
    Sampling is an important primitive in probabilistic and quantum algorithms. In the spirit of communication complexity, given a function f : X × Y → {0, 1} and a probability distribution D over X × Y , we define the sampling complexity of (f,D) as the minimum number of bits that Alice and Bob must communicate for Alice to pick x ∈ X and Bob to pick y ∈ Y as well as a value z such that the resulting distribution of (x, y, z) is close to the distribution (D, f(D)). In this paper we initiate the study of sampling complexity, in both the classical and quantum models. We give several variants of a definition. We completely characterize some of these variants and give upper and lower bounds on others. In particular, this allows us to establish an exponential gap between quantum and classical sampling complexity for the set-disjointness function

    Deformations of permutation representations of Coxeter groups

    Get PDF
    The permutation representation afforded by a Coxeter group W acting on the cosets of a standard parabolic subgroup inherits many nice properties from W such as a shellable Bruhat order and a flat deformation over ℤ[q] to a representation of the corresponding Hecke algebra. In this paper we define a larger class of “quasiparabolic” subgroups (more generally, quasiparabolic W-sets), and show that they also inherit these properties. Our motivating example is the action of the symmetric group on fixed-point-free involutions by conjugation

    The duality gap for two-team zero-sum games

    Get PDF
    We consider multiplayer games in which the players fall in two teams of size k, with payoffs equal within, and of opposite sign across, the two teams. In the classical case of k = 1, such zero-sum games possess a unique value, independent of order of play. However, this fails for all k > 1; we can measure this failure by a duality gap, which quantifies the benefit of being the team to commit last to its strategy. We show that the gap equals 2(1−2^(1−k)) for m = 2 and 2(1−m^(−(1−o(1))k)) for m > 2, with m being the size of the action space of each player. Extensions hold also for different-size teams and players with various-size action spaces. We further study the effect of exchanging order of commitment among individual players (not only among the entire teams). The class of two-team zero-sum games is motivated from the weak selection model of evolution, and from considering teams such as firms in which independent players (ideally) have shared utility

    Allocation of Divisible Goods under Lexicographic Preferences

    Get PDF
    We present a simple and natural non-pricing mechanism for allocating divisible goods among strategic agents having lexicographic preferences. Our mechanism has favorable properties of incentive compatibility (strategy-proofness), Pareto efficiency, envy-freeness, and time efficiency

    Perfect initialization of a quantum computer of neutral atoms in an optical lattice of large lattice constant

    Get PDF
    We propose a scheme for the initialization of a quantum computer based on neutral atoms trapped in an optical lattice with large lattice constant. Our focus is the development of a compacting scheme to prepare a perfect optical lattice of simple orthorhombic structure with unit occupancy. Compacting is accomplished by sequential application of two types of operations: a flip operator that changes the internal state of the atoms, and a shift operator that moves them along the lattice principal axis. We propose physical mechanisms for realization of these operations and we study the effects of motional heating of the atoms. We carry out an analysis of the complexity of the compacting scheme and show that it scales linearly with the number of lattice sites per row of the lattice, thus showing good scaling behavior with the size of the quantum computer.Comment: 18 page
    corecore