3,961 research outputs found

    Non-Markovian Dynamics of Charge Carriers in Quantum Dots

    Full text link
    We have investigated the dynamics of bound particles in multilevel current-carrying quantum dots. We look specifically in the regime of resonant tunnelling transport, where several channels are available for transport. Through a non-Markovian formalism under the Born approximation, we investigate the real-time evolution of the confined particles including transport-induced decoherence and relaxation. In the case of a coherent superposition between states with different particle number, we find that a Fock-space coherence may be preserved even in the presence of tunneling into and out of the dot. Real-time results are presented for various asymmetries of tunneling rates into different orbitals.Comment: 9 pages, 3 figures, International Workshop on Physics-Based Mathematical Models for Low-Dimensional Semiconductor Nanostructures. BIRS, November 18-23, 200

    Potential of a New Technique for Remote Sensing of Hydrocarbon Accumulations and Blind Uranium Deposits: Buried Lif Thermoluminescence Dosimeters

    Get PDF
    Buried thermoluminescence dosimeters may be useful in remote sensing of petroleum and natural gas accumulations and blind uranium deposits. They act as integrating detectors that smooth out the effects of environmental variations that affect other measuring systems and result in irregularities and poor repeatability in measurements made during gas and radiometric surveys

    Short-lived solar burst spectral component at f approximately 100 GHz

    Get PDF
    A new kind of burst emission component was discovered, exhibiting fast and distinct pulses (approx. 60 ms durations), with spectral peak emission at f approx. 100 GHz, and onset time coincident to hard X-rays to within approx. 128 ms. These features pose serious constraints for the interpretation using current models. One suggestion assumes the f approx. 100 GHz pulses emission by synchrotron mechanism of electrons accelerated to ultrarelativistic energies. The hard X-rays originate from inverse Compton scattering of the electrons on the synchrotron photons. Several crucial observational tests are needed for the understanding of the phenomenon, requiring high sensitivity and high time resolution (approx. 1 ms) simultaneous to high spatial resolution (0.1 arcsec) at f approx. 110 GHz and hard X-rays

    The Eastward Enlargement of the Eurozone: Trade and FDI

    Get PDF
    Trade and FDI, Economic Integration

    The possible importance of synchrotron/inverse Compton losses to explain fast MM-wave and hard X-ray emission of a solar event

    Get PDF
    The solar burst of 21 May 1984 presented a number of unique features. The time profile consisted of seven major structures (seconds), with a turnover frequency or approx. 90 GHz, well correlated in time to hard X-ray emission. Each structure consisted of multiple fast pulses (.1 seconds), which were analyzed in detail. A proportionality between the repetition rate of the pulses and the burst fluxes at 90 GHz and or approx. 100 keV hard X-rays, and an inverse proportionality between repetition rates and hard X-rays power law indices have been found. A synchrotron/inverse Compton model has been applied to explain the emission of the fast burst structures, which appear to be possible for the first three or four structures

    Obtaining Au thin films in atmosphere of reactive nitrogen through magnetron sputtering

    Get PDF
    4d and 5d series of the transition metals are used to the obtaining nitrides metallic, due to the synthesis of PtN, AgN and AuN in the last years. Different nitrides are obtained in the Plasma Assisted Physics Vapour Deposition system, due to its ionization energy which is necessary for their formation. In this paper a Magnetron Sputtering system was used to obtain Au thin films on Si wafers in Nitrogen atmosphere. The substrate temperature was varied between 500 to 950°C. The samples obtained at high temperatures (>500°C) show Au, Si and N elements, as it is corroborated in the narrow spectrum obtained for X-Ray Photoelectron Spectroscopy; besides the competition of orientation crystallographic texture between (111) and (311) directions was present in the X-Ray Diffraction analysis to the sample heated at 950°C

    A new class of solar burst with MM-wave emission but only at the highest frequency (90 GHz)

    Get PDF
    High sensitivity and high time resolution solar observations at 90 GHz (lambda = 3.3 mm) have identified a unique impulsive burst on May 21, 1984 with emission that was more intense at this frequency than at lower frequencies. The first major time structure of the burst was over 10 times more intense at 90 GHz than at 30 GHz, 7 GHz, or 2.8 GHz.Only 6 seconds later, the 30 GHz impulsive structures started to be observed but still with lower intensity than at 90 GHz. Hard X-ray time structures at energies above 25 keV were almost identical to the 90 GHZ structures (to better than one second). All 90 GHz major time structures consisted of trains of multiple subsecond pulses with rise times as short as 0.03 sec and amplitudes large compared to the mean flux. When detectable, the 30 GHz subsecond pulses had smaller relative amplitude and were in phase with the corresponding 90 GHz pulses
    • …
    corecore