256 research outputs found

    On Possible Arc Inception on Low Voltage Solar Array

    Get PDF
    Recent analysis of spacecraft failures during the period of 1990-2013 demonstrated clearly that electrostatic discharges caused more than 8 percent of all registered failures and anomalies, and comprised the most costly losses (25 percent) for operating companies and agencies. The electrostatic discharges on spacecraft surfaces are the results of differential charging above some critical (threshold) voltages. The mechanisms of differential charging are well known, and various methods have been developed to prevent a generation of significant electric fields in areas of triple junctions. For example, low bus voltages in Low Earth Orbit plasma environment and slightly conducting layer over cover-glass (ITO) in Geosynchronous Orbit surroundings are believed to be quite reliable measures to prevent discharges on respective surfaces. In most cases, the vulnerable elements of spacecraft (solar arrays, diode boards, etc.) go through comprehensive ground tests in vacuum chambers. However, tests articles contain the miniscule fragments of spacecraft components such as 10-30 solar cells of many thousands deployed on spacecraft in orbit. This is one reason why manufacturing defects may not be revealed in ground tests but expose themselves in arcing on array surface in space. The other reason for ineffectiveness of discharge preventive measures is aging of all materials in harsh orbital environments. The expected life time of modern spacecraft varies within the range of five-fifteen years, and thermal cycling, radiation damages, and mechanical stresses can result in surface erosion on conductive layers and microscopic cracks in cover-glass sheets and adhesive films. These possible damages may cause significant increases in local electric field strengths and subsequent discharges. The primary discharges may or may not be detrimental to spacecraft operation, but they can produce the necessary conditions for sustained arcs initiation. Multiple measures were developed to prevent sustained discharges between adjacent strings, and many ground tests were performed to determine threshold parameters (voltage and current) for sustained arcs. And again, manufacturing defects and aging in space environments may result in considerable decrease of critical threshold parameters. This paper is devoted to the analysis of possible reasons behind arcing on spacecraft with low bus voltages

    Galactic Scale Feedback Observed in the 3C 298 Quasar Host Galaxy

    Get PDF
    We present high angular resolution multi-wavelength data of the 3C 298 radio-loud quasar host galaxy (z=1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph with adaptive optics, Atacama Large Millimeter/submillimeter Array (ALMA), Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ\beta, [OIII], Hα\alpha, [NII], and [SII], as well as molecular lines CO (J=3-2) and (J=5-4). Along the path of 3C 298's relativistic jets we detect conical outflows of ionized gas with velocities up to 1700 km s−1^{-1} and outflow rate of 450-1500 M⊙_\odotyr−1^{-1}. Near the spatial center of the conical outflow, CO (J=3-2) emission shows a molecular gas disc with a total molecular mass (MH2\rm M_{H_{2}}) of 6.6±0.36×109\pm0.36\times10^{9}M⊙_{\odot}. On the molecular disc's blueshifted side we observe a molecular outflow with a rate of 2300 M⊙_\odotyr−1^{-1} and depletion time scale of 3 Myr. We detect no narrow Hα\alpha emission in the outflow regions, suggesting a limit on star formation of 0.3 M⊙_\odotyr−1^{-1}kpc−2^{-2}. Quasar driven winds are evacuating the molecular gas reservoir thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is 109.37−9.5610^{9.37-9.56}M⊙_{\odot} and we determine a dynamical bulge mass of 1-1.7×1010R1.6kpc\rm\times10^{10}\frac{R}{1.6 kpc} M⊙_{\odot}. The bulge mass of 3C 298 resides 2-2.5 orders of magnitude below the expected value from the local Mbulge−MBH\rm_{bulge}-M_{BH} relationship. A second galactic disc observed in nebular emission is offset from the quasar by 9 kpc suggesting the system is an intermediate stage merger. These results show that galactic scale negative feedback is occurring early in the merger phase of 3C 298, well before the coalescence of the galactic nuclei and assembly on the local relationship.Comment: 23 pages, 11 figures, 4 tables, Accepted for publication in the Astrophysical Journa

    Providing stringent star formation rate limits of z∼\sim2 QSO host galaxies at high angular resolution

    Get PDF
    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z=2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini-North Observatories using OSIRIS and NIFS coupled with the LGS-AO systems. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z=2.15. We demonstrate that the combination of AO and IFS provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a PSF from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy. We detect Hα\alpha and [NII] for two sources, SDSS J1029+6510 and SDSS J0925+06 that have both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα\alpha is from star formation, we infer a star formation rate for SDSS J1029+6510 of 78.4 M⊙_\odotyr−1^{-1} originating from a compact region that is kinematically offset by 290 - 350 km/s. For SDSS J0925+06 we infer a star formation rate of 29 M⊙_\odotyr−1^{-1} distributed over three clumps that are spatially offset by ∼\sim 7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc distance from the QSO that the un-reddened star formation limit is << 0.3 M⊙_\odotyr−1^{-1}kpc−2^{-2}. If we assume a typical extinction values for z=2 type-1 QSOs, the dereddened star formation rate for our null detections would be << 0.6 M⊙_\odotyr−1^{-1}kpc−2^{-2}. These IFS observations indicate that if star formation is present in the host it would have to occur diffusely with significant extinction and not in compact, clumpy regions.Comment: 17 pages, 7 figures, 7 tables, Accepted to Ap

    Electromagnetic Radiation in the Plasma Environment Around the Shuttle

    Get PDF
    As part of the SAMPIE (The Solar Array Module Plasma Interaction Experiment) program, the Langmuir probe (LP) was employed to measure plasma characteristics during the flight STS-62. The whole set of data could be divided into two parts: (1) low frequency sweeps to determine voltage-current characteristics and to find electron temperature and number density; (2) high frequency turbulence (HFT dwells) data caused by electromagnetic noise around the shuttle. The broadband noise was observed at frequencies 250-20,000 Hz. Measurements were performed in ram conditions; thus, it seems reasonable to believe that the influence of spacecraft operations on plasma parameters was minimized. The average spectrum of fluctuations is in agreement with theoretical predictions. According to purposes of SAMPIE, the samples of solar cells were placed in the cargo bay of the shuttle, and high negative bias voltages were applied to them to initiate arcing between these cells and surrounding plasma. The arcing onset was registered by special counters, and data were obtained that included the amplitudes of current, duration of each arc, and the number of arcs per one experiment. The LP data were analyzed for two different situations: with arcing and without arcing. Electrostatic noise spectra for both situations and theoretical explanation of the observed features are presented in this report

    Experimental Study of Arcing on High-voltage Solar Arrays

    Get PDF
    The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism [1-4] suggests that such modifications can be done in the following directions: i) to insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); ii) to change a coverglass geometry (overhang); iii) to increase a coverglass thickness; iiii) to outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that simulates the LEO operational temperature. The experimental setup is described below

    Experimental Results of Thin-Film Photovoltaic Cells in a Low Density LEO Plasma Environment: Ground Tests

    Get PDF
    Plasma ground testing results, conducted at the Glenn Research Center (GRC) National Plasma Interaction (N-PI) Facility, are presented for a number of thin-film photovoltaic cells. The cells represent a mix of promising new technologies identified by the Air Force Research Laboratory (AFRL) under the CYGNUS Space Science Technology Experiment (SSTE-4) Program. The current ground tests are aimed at characterizing the performance and survivability of thin film technologies in the harsh low earth orbital space environment where they will be flown. Measurements of parasitic current loss, charging/dielectric breakdown of cover-slide coatings and arcing threshold tests are performed for each individual cell. These measurements are followed by a series of experiments designed to test for catastrophic arc failure mechanisms. A special type of power supply, called a solar array simulator (SAS) with adjustable voltage and current limits on the supply s output, is employed to bias two adjacent cells at a predetermined voltage and current. The bias voltage is incrementally ramped up until a sustained arc results. Sustained arcs are precursors to catastrophic arc failure where the arc current rises to a maximum value for long timescales often ranging between 30 to 100 sec times. Normal arcs by comparison, are short lived events with a timescale between 10 to 30 sec. Sustained arcs lead to pyrolization with extreme cell damage and have been shown to cause the loss of entire array strings in solar arrays. The collected data will be used to evaluate the suitability of thin-film photovoltaic technologies for future space operations

    MSAT-X electronically steered phased array antenna system

    Get PDF
    A low profile electronically steered phased array was successfully developed for the Mobile Satellite Experiment Program (MSAT-X). The newly invented cavity-backed printed crossed-slot was used as the radiating element. The choice of this element was based on its low elevation angle gain coverage and low profile. A nineteen-way radial type unequal power divider and eighteen three-bit diode phase shifters constitute the beamformer module which is used to scan the beams electronically. A complete hybrid mode pointing system was also developed. The major features of the antenna system are broad coverage, low profile, and fast acquisition and tracking performance, even under fading conditions. Excellent intersatellite isolation (better than 26 dB) was realized, which will provide good quality mobile satellite communication in the future

    Low Frequency Waves in the Plasma Environment Around the Shuttle

    Get PDF
    As a part of the SAMPIE (The Solar Array Module Plasma Interaction Experiment) program, the Langmuir probe (LP) was employed to measure plasma characteristics during the flight of STS-62. The whole set of data could be divided into two parts: (1) low frequency sweeps to determine voltage-current characteristics and to find the electron temperature and number density; (2) high frequency turbulence (HFT) data caused by electromagnetic noise around the Shuttle. Broadband noise was observed at 250-20,000 Hz frequencies. Measurements were performed in ram conditions; thus, it seems reasonable to believe that the influence of spacecraft operations on plasma parameters was minimized. It is shown that ion acoustic waves were observed, and two kinds of instabilities are suggested for explanation of the origin of these waves. According to the purposes of SAMPIE, samples of solar cells were placed in the cargo bay of the Shuttle, and high negative bias voltages were applied to them to initiate arcing between these cells and the surrounding plasma. The arcing onset was registered by special counters, and data were obtained that included the amplitudes of current, duration of each arc, and the number of arcs per one experiment. The LP data were analyzed for two different situations: with arcing and without arcing. Electrostatic noise spectra for both situations and a theoretical explanation of the observed features are presented in this paper

    Sensory-Feedback Exoskeletal Arm Controller

    Get PDF
    An electromechanical exoskeletal arm apparatus has been designed for use in controlling a remote robotic manipulator arm. The apparatus, called a force-feedback exoskeleton arm master (F-EAM) is comfortable to wear and easy to don and doff. It provides control signals from the wearer s arm to a robot arm or a computer simulator (e.g., a virtual-reality system); it also provides force and torque feedback from sensors on the robot arm or from the computer simulator to the wearer s arm. The F-EAM enables the wearer to make the robot arm gently touch objects and finely manipulate them without exerting excessive forces. The F-EAM features a lightweight design in which the motors and gear heads that generate force and torque feedback are made smaller than they ordinarily would be: this is achieved by driving the motors to power levels greater than would ordinarily be used in order to obtain higher torques, and by providing active liquid cooling of the motors to prevent overheating at the high drive levels. The F-EAM (see figure) includes an assembly that resembles a backpack and is worn like a backpack, plus an exoskeletal arm mechanism. The FEAM has five degrees of freedom (DOFs) that correspond to those of the human arm: 1. The first DOF is that of the side-to-side rotation of the upper arm about the shoulder (rotation about axis 1). The reflected torque for this DOF is provided by motor 1 via drum 1 and a planar four-bar linkage. 2. The second DOF is that of the up-and-down rotation of the arm about the shoulder. The reflected torque for this DOF is provided by motor 2 via drum 2. 3. The third DOF is that of twisting of the upper arm about its longitudinal axis. This DOF is implemented in a cable remote-center mechanism (CRCM). The reflected torque for this DOF is provided by motor 3, which drives the upper-arm cuff and the mechanism below it. A bladder inflatable by gas or liquid is placed between the cuff and the wearer s upper arm to compensate for misalignment between the exoskeletal mechanism and the shoulder. 4. The fourth DOF is that of flexion and extension of the elbow. The reflected torque for this DOF is provided by motor 4 and drum 4, which are mounted on a bracket that can slide longitudinally by a pin-and-slot engagement with the upper-arm cuff to compensate for slight variations in the position of the kinematic center of the elbow. Attached to drum 4 is an adapter plate to which is attached a CRCM for the lower arm. 5. The lower-arm CRCM implements the fifth DOF, which is the twist of the forearm about its longitudinal axis. Motor 5 provides the reflected torque for this DOF by driving the lower-arm cuff. A rod transmits twist and torsion between the lower-arm cuff and the hand cuff. With this system, the motion of the wearer s joints and the reflected torques applied to these joints can be measured and controlled in a relatively simple manner. This is because the anthropomorphic design of the mechanism imitates the kinematics of the human arm, eliminating the need for kinematic conversion of joint-torque and joint-angle data
    • …
    corecore