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Abstract  Recent analysis of spacecraft failures during the period of 1990-2013 demonstrated clearly 

that electrostatic discharges caused more than 8% of all registered failures and anomalies, and 

comprised the most costly losses (25%) for operating companies and agencies.  The electrostatic 

discharges on spacecraft surfaces are the results of differential charging above some critical 

(threshold) voltages. The mechanisms of differential charging are well known, and various methods 

have been developed to prevent a generation of significant electric fields in areas of triple junctions. 

For example, low bus voltages in Low Earth Orbit plasma environment and slightly conducting layer 

over coverglass (ITO) in Geosynchronous Orbit surroundings are believed to be quite reliable 

measures to prevent discharges on respective surfaces. In most cases, the vulnerable elements of 

spacecraft (solar arrays, diode boards, etc.) go through comprehensive ground tests in vacuum 

chambers. However, tests articles contain the miniscule fragments of spacecraft components such as 

10-30 solar cells of many thousands deployed on spacecraft in orbit. This is one reason why 

manufacturing defects may not be revealed in ground tests but expose themselves in arcing on array 

surface in space. The other reason for ineffectiveness of discharge preventive measures is aging of all 

materials in harsh orbital environments. The expected life time of modern spacecraft varies within 

the range of five-fifteen years, and thermal cycling, radiation damages, and mechanical stresses can 

result in surface erosion on conductive layers and microscopic cracks in coverglass sheets and 

adhesive films. These possible damages may cause significant increases in local electric field strengths 

and subsequent discharges. The primary discharges may or may not be detrimental to spacecraft 

operation, but they can produce the necessary conditions for sustained arcs initiation. Multiple 

measures were developed to prevent sustained discharges between adjacent strings, and many 

ground tests were performed to determine threshold parameters (voltage and current) for sustained 

arcs. And again, manufacturing defects and aging in space environments may result in considerable 

decrease of critical threshold parameters. This paper is devoted to the analysis of possible reasons 

behind arcing on spacecraft with low bus voltages. 

 

                                                               Nomenclature 

                                                 
A           = area, m2 

Cs = capacitance, F/m2 

E           = electric field, V/m 

Te =  electron temperature, eV 

U =  voltage, V  

W          = electron energy, eV 

d           = coverglass thickness, m 

je                 = electron current density, A/m-2 

ne = electron number density, m-3 

t = time, s  

Φ          = potential, V 

β           = enhancement factor, 

δ = secondary electron emission yield 

ε            = dielectric permittivity 

σ           = conductivity, S/m 

τ = relaxation time, s 
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1. INTRODUCTION 

 

The magnitudes of differential charging depend on many factors: orbital environment, spacecraft 

design, operational voltage, material properties, temperature, and time in orbit. Subsequent 

discharges are responsible for significant part of failures and anomalies that cause substantial 

financial losses [1]. In order to prevent electrostatic discharges (or to mitigate their consequences) 

a spacecraft designer should possess reliable data regarding space environments and spacecraft 

material properties. Space plasma parameters are monitored with a quite satisfactory precision for 

Low Earth Orbit (LEO) and Geosynchronous Orbit (GEO) [2-4]. Relevant material properties have 

been under study for a long time but two main problems in this field are hold: entry of new 

materials, and changing material properties with time caused by long exposure to space 

environment [5]. There are two mutually supplemented approaches to determination of differential 

charging, arc thresholds, and expected arc rates on spacecraft in orbit: numerical simulations and 

ground tests in respective vacuum chambers. Significant contribution to the data base is made by 

space experiments (like MISSIE, for example) but high cost and obvious scope limitations restrict 

the volume of results concerning materials and space plasma parameters. Ground tests have 

obvious restrictions: only small parts of spacecraft can be tested in simulated environments, and 

simulated environments are different from orbital ones. That is why ground tests are supposed to 

provide “the worst conditions” in simulated environment where differential charging exceeds 

considerably the magnitudes expected in orbit. For example, in simulated GEO environment mono 

energetic electron beam (usually a few keV) is used to generate positive charging of dielectric 

surface. Such test setup excludes effect of radiation induced conductivity (RIC) that decreases 

differential potential in space [6].  In order to prevent detrimental results of differential charging 

in space all spacecraft elements that are prone to differential charging must be tested in the 

beginning of life and after artificial aging achieved by thermal cycling and irradiation in ground 

facilities. Essential features of such comprehensive tests are discussed below.      

 

2. LEO SIMULATIONS               

 

Differential charging in LEO plasma is caused by obvious requirement: net current collected by a 

spacecraft should be equal to zero in steady state conditions. The surfaces of dielectric parts 

exposed to the plasma acquire a low negative potential of a few volts due to low electron 

temperature. Floating potential of conductive surface of spacecraft body depends on solar array 

operational voltage, solar array design, and ratio of conductive and dielectric surface areas. The 

real magnitude of this potential may vary within rather wide range of 25-80% from operational 

voltage. Negative pole of a solar array is connected to s/c body (negative common ground), and 

significant potential difference can be originated between the interconnectors (cell edges) of the 

most negative cells and their coverglasses. The map of surface potential distribution for s/c in LEO 

can be obtained by computer modelling with appropriate software like NASCAP, SPISE, and 

MUSKAT but arcing threshold, collected current, and possibility of sustained arc initiation can be 

determined by ground tests in plasma chamber only.  The test circuitry diagram, plasma 

parameters, and data acquiring system are described in Ref. 7.  The results of tests for different 

solar array samples are shown in Tables 1&2 [8-10].   All these tests were performed under ambient 

temperature. 
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Table 1. List of solar array samples tested in two large chambers. 

Sample      |        Coverglass                |   Overhang   |      Cell size    |  Interconnect |  

No.(Type) |Thickness (µm): Material |       (µm)       |           (cm)     |                       |            

___________________________________________________________________ 

1(Si)            300                   UVR               0                         4x6           exposed       

2(Si)            150                   UVR               0                         4x6           exposed 

3(Si)            150       CMX UVR        0                         4x6     exposed 

4(Si)         150                    UVR            250                       4x6      exposed  

5(Si)            150                    UVR              0                         8x8         wraptrough 

6(TJ)           150                    UVR              0                         4x6           exposed     

7(TJ)           150                    UVR              0                         4x6           exposed      

8(TJ)           75                     CMX              0                         4x8            exposed      

9(TJ)           75                     CMX              0                         4x8            exposed      

10(TJ)        100                    CMX              0                         4x8            exposed       

              

Table 2. Arc inception parameters. 

Sample No. | Primary Arc    | Sustained Arc Inception | 

           Inception(V)   |        V   |     A                   | 

1                         250                    60        2.0 

2                         265                    80        1.6 

3                         280 

4                         340 

5                      300(530)            >120     >4 

6                         170                    80        2.25 

7                         200                    50        2.0 

                                                     50        2.6 

8                        260 

9                      >240 

10                      220                    100    >1.6 

 

It is seen that arc thresholds for modern solar arrays exceed 200 V. Currently, the spacecraft 

operational voltages are well below this threshold, and one might conclude that electrostatic 

discharges on solar arrays do not present any hazard for their functioning. However, such a 

conclusion is wrong. First of all, when s/c is coming out of eclipse its solar array is cold (up to -

100o C) and voltage is about twice higher than operational one if the circuit is open. Arc threshold 

decreases significantly with decreasing temperature, and it may drop to 100-120 V negative 

(Fig.1). The second cause of arcing at low voltage is possible crack (or cavern) in adhesive layer 

developed due to multiple thermal cycles and mechanical stresses in orbit.  



4 

American Institute of Aeronautics and Astronautics 
 

 
 

Fig.1. One example of decreasing arc threshold with temperature [11]. 

 

It is well known that the primary reason for electrostatic discharge is high electric field strength in 

the area of triple junction (interconnector-adhesive-plasma). This field strength can be calculated 

as following: 

The potential difference between coverglass and underlying (semi)conductor is 

2211 dEdEU                        (1) 

Where E1 and E2 are electric field strengths in adhesive and coverglass respectively; d1 and d2 are 

thicknesses of respective layers. 

Border condition on adhesive/coverglass plane is 

2211 EE                                   (2) 

Thus, electric field strength on the surface of (semi)conductor is 

U
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
                    (3) 

Dielectric constant of adhesive material (DC93500) is equal to ε1=3. Dielectric constant of 

coverglass depends on glass type but can be adopted as ε2=5 for purposes of crude estimates. If 

there would be a small cavern in adhesive layer then the dielectric constant of vacuum (εc=1) 

should be substituted in Eq.3 for the calculation of electric field strength on (semi)conductor 

surface. For example, if d1=50 µm and d2=150 µm the field enhancement factor would be  

75.1
1

1 
E

E c                        (4)       

For more contemporary arrays with thicknesses of respective layers of 25 µm and 125 µm the 

enhancement factor will reach β=2.  The third factor influencing arc threshold magnitude is 
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outgassing of spacecraft structural elements. One test in controlled environment demonstrated the 

dependence of arc rate on water vapor partial pressure (Fig.2). 
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Fig.2. Arc rates were measured for two different water vapor partial pressures at 300 K: 

0.26 µTorr  (red) and 0.023 µTorr (blue) [12].  

Thus, arcs on solar arrays with operational voltages above 100 V can be prevented by 

implementing special design features like wrapped through interconnectors or entire encapsulation 

of triple-junction areas.  

 

3. GEO SIMULATIONS 

Differential charging in GEO is caused by different reaction of dielectric and conductive materials 

to the irradiation with energetic electrons [2, p.16-19]. Spacecraft body (exposed conductive 

surface) in eclipse acquires the potential that is determined by the balance of electron and ion 

currents:  
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The duration of charging process can be estimated as 

Aj

C

e

scsc
sc




                                   (6) 

The real magnitude is varying within the wide range of 0.25-3 s depending on spacecraft 

dimensions and plasma parameters. The charging of coverglass is much slower and complicated 

process. First of all, the capacitance of solar array is about Ca=0.2-0.3 µF/m2, and differential 

potential of U=1 kV can be reached during the time span of 30-300 s. In addition, secondary 

electron emission yield δ(W)  for glass depends on primary electron energy and reaches peak 

factors of δ(Wm)=5-8 for different materials [5,13]. Due to fast spacecraft body charging the 

electrons with energies only above s/c potential will reach the coverglass, and relations between 
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electron energy distribution and secondary yield characteristics come to interplay [4,14,15]. The 

appropriate differential charging on solar array sample in vacuum chamber can be reached by 

biasing strings with external power supply and irradiation the surface with monoenergetic electron 

beam. Steady state differential charging will be achieved when the energy of electrons is equal to 

the second crossover potential on δ(W) graph. Thus, the differential potential is 

 

scbbiascgbias WWUUU                           (7) 

During all our tests the electron beam energy exceeded bias voltage on fixed value of 0.8 kV, and 

differential charging is expected to be independent on beam energy and beam current density: 

 

 kVWU sc 8.0                                       (8) 

 

Second crossover energy is a tricky parameter that depends on temperature, incidence angle, and 

surface conditions. For our further discussion it seems quite satisfactory to adopt the magnitudes 

of 2.5-3 kV for glasses and 1-1.5 kV for RTV [16,17]. Differential potentials have been measured 

for different samples, and the results are shown in Fig.3.  

 

 

 

Fig.3 Differential charging is shown for samples from Table 1: 1-##2&3 [18]; 2-##8&9 [9];  

         3-#5 [19]; 4-#10 [10]; 5-new coupon [12]. 

 

Significant variations in differential potentials cannot be attributed to coverglass material 

properties (Wsc). For example, coupons #2&3 had the same coverglass as coupon #5 but difference 

in charging was about 1 kV. Moreover, the differential charging depended on bias voltage (beam 

energy) as it is shown in Fig.4. Increase of 1 kV in bias voltage caused increase in differential 

charging of about 0.2 kV. All coupons demonstrated arcing in GEO simulated conditions. 

According to the conventional theory of arc inception the discharge is initiated at the moment 

when electric field strength reaches a threshold magnitude [20,21]. An estimate for lower limit of 

charging time can be obtained by solving the equation for coverglass potential [22]. When the solar  
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Fig.4. Differential potentials are shown for coupon #5: left panel-Ub= -3 kV; right panel-Ub= 

          -4 kV. 

 

array surface is irradiated by an electron beam the coverglass potential increases according to the 

following equation: 

 )1( cgbbs UWj
dt

dU
C                                               (9) 

Steady state is reached when the difference between the coverglass potential and electron beam 

energy is equal to the so called “second crossover” energy. In the neighborhood of this point the 

secondary electron emission yield can be represented in simple exponential form: 

  







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sc

m
W

W
W exp                                          (10) 

Substituting Eq.10 in Eq.9 and introducing dimensionless variables  

t
WC

j

scs

b   ; 
sc

cgb

W

UW 
                          (11) 

one can obtain the solution shown in Fig.5. 

 

Fig.5. Sample is charging by an electron beam. Steady state voltage can be reached 

          for a time span about τ=4. 
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For example, typical beam of 1 nA/cm2 provides coverglass charging time a little more than 120 

s. If second crossover energy is 2.0 kV [23], bias voltage is -2.5 kV, and beam energy is 3.3 kV 

then surface potential at steady state is Ucg= -1.3 kV, and differential charging reaches U= 1.2 kV.  

Measurements demonstrated a strongly nonlinear dependence of arc rate on electron beam current 

density (Fig.6).   

 

 
 

Fig.6. Arc rates were measured during 15 minutes irradiation time for each point. 

 

The reasons for these discrepancy between measurements and theory are not clear now. One 

possible explanation could be attributed to the volume and surface conductivities of dielectrics 

involved-coverglass and adhesive.  In reality, conductive current should be added to the right side 

of the Eq.(9): 

c

c
d

U
j                                (12) 

 It is difficult to estimate the contribution of this current to the duration of charging process. For a 

typical glass conductivity of 10-13 S/m the conductive current density is below 0.06-0.1 nA/cm2 

under differential potential of 1 kV, and the contribution of conductive current to charging process 

(Eq.9) can be disregarded. However, coverglass surface contamination can influence the surface 

conductivity and the magnitude of second crossover energy. If ITO layer with conductivity of      

10-9 S/m is used coverglass will never be charged to a high differential potential. Thus, the lower 

estimate for coverglass (with no ITO layer) charging time is a few minutes under GEO 

environment. The field enhancement caused by charging of side surfaces of dielectrics could be 

important for arc inception [24]. In simulated LEO conditions the current density of energetic 

electrons hitting side surface of dielectric is estimated as 1-2.5 nA/cm2 [25]. This flux may provide 

the needed field enhancement, which explains a comparatively low arc threshold of 180-230 V. In 

simulated GEO environment the sharp increase of arc rate at beam current density above 2 nA/cm2 

may be caused by the same effect. It is worth noting that no RIC consequences were taken into 

account in experiments and theoretical estimates presented in this paper.  
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4. Conclusions 

  

Electrostatic discharges on solar array surface can be initiated even on arrays with comparatively 

low operational voltages (around 100 V). RTV grouting the gaps between strings and 

interconnectors results in increasing thresholds but cannot guarantee absolute preventions of arcs 

[26, 27]. The most effective method for prevention of differential charging in GEO environment 

is ITO layer over coverglass but this method has such disadvantages as higher solar array cost and 

weight. Moreover, if spacecraft is supposed to fly through LEO and GEO then the deployment of 

ITO causes a sharp increase in current collection from ionosphere plasma and decrease in array 

efficiency [10,12].  The is no unique technique in preventing arcs: components of spacecraft power 

system must be undergone comprehensive tests in simulated environments corresponding to the 

spacecraft trajectory.    
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