7 research outputs found

    Oral Yohimbine as a New Probe Drug to Predict CYP2D6 Activity: Results of a Fixed-Sequence Phase I Trial

    No full text
    Objective!#!Yohimbine pharmacokinetics were determined after oral administration of a single oral dose of yohimbine 5 mg and a microdose of yohimbine 50 µg in relation to different cytochrome P450 (CYP) 2D6 genotypes. The CYP2D6 inhibitor paroxetine was used to investigate the influence on yohimbine pharmacokinetics. Microdosed midazolam was applied to evaluate a possible impact of yohimbine on CYP3A activity and the possibility of combining microdosed yohimbine and midazolam to simultaneously determine CYP2D6 and CYP3A activity.!##!Methods!#!In a fixed-sequence clinical trial, 16 healthy volunteers with a known CYP2D6 genotype [extensive (10), intermediate (2) and poor (4) metaboliser] received an oral dose of yohimbine 50 µg, yohimbine 5 mg at baseline and during paroxetine as a CYP2D6 inhibitor. Midazolam (30 µg) was co-administered to determine CYP3A activity at each occasion. Plasma concentrations of yohimbine, its main metabolite 11-OH-yohimbine, midazolam and paroxetine were quantified using validated liquid chromatography-tandem mass spectrometry assays.!##!Results!#!Pharmacokinetics of yohimbine were highly variable and a CYP2D6 genotype dependent clearance was observed. After yohimbine 5 mg, the clearance ranged from 25.3 to 15,864 mL/min and after yohimbine 50 µg, the clearance ranged from 39.6 to 38,822 mL/min. A more than fivefold reduction in clearance was caused by paroxetine in CYP2D6 extensive metabolisers, while the clearance in poor metabolisers was not affected. Yohimbine did not alter CYP3A activity as measured by microdosed midazolam.!##!Conclusions!#!The pharmacokinetics of yohimbine were highly correlated with CYP2D6, which was further supported by the clearance inhibition caused by the CYP2D6 inhibitor paroxetine. With these data, yohimbine is proposed to be a suitable probe drug to predict CYP2D6 activity. In addition, the microdose can be used in combination with microdosed midazolam to simultaneously evaluate CYP2D6 and CYP3A activity without any interaction between the probe drugs and because the microdoses exert no pharmacological effects.!##!Clinical trial registration!#!EudraCT2017-001801-34

    Pentraxin 3 in patients with severe sepsis or shock: the ALBIOS trial

    No full text
    Background: The long pentraxin PTX3 is a key component of the humoral arm of innate immunity related to sepsis severity and mortality. We evaluated the clinical and prognostic significance of circulating PTX3 in the largest cohort ever reported of patients with severe sepsis or septic shock. Materials and methods: Plasma PTX3 was measured on days 1, 2 and 7 after randomization of 958 patients to albumin or crystalloids for fluid resuscitation in the multicentre Albumin Italian Outcome Sepsis (ALBIOS) trial. We tested the association of PTX3 and its changes over time with clinical severity, prevalent and incident organ dysfunctions, 90-day mortality and treatment. Results: PTX3 was high at baseline (72 [33\u2013186] ng/mL) and rose with the severity and number of organ dysfunctions (P < 0\ub7001) and the incidence of subsequent new failures. The PTX3 concentration dropped from day 1 to 7, but this decrease was less pronounced in patients with septic shock (P = 0\ub70004). Higher concentrations of PTX3 on day 1 predicted incident organ dysfunctions. Albumin supplementation was associated with lower levels of PTX3 in patients with septic shock (P = 0\ub7005) but not in those without shock. In a fully adjusted multivariable model, PTX3 on day 7 predicted 90-day mortality. Smaller drops in PTX3 predicted higher 90-day mortality. Conclusions: In severe sepsis and septic shock, early high PTX3 predict subsequent new organ failures, while a smaller drop in circulating PTX3 over time predicts an increased risk of death. Patients with septic shock show lower levels of PTX3 when assigned to albumin than to crystalloids
    corecore