179 research outputs found

    The relationship between case-control differential gene expression from brain tissue and genetic associations in schizophrenia

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that supports the findings of this study are available in the supplementary material of this article.Large numbers of genetic loci have been identified that are known to contain common risk alleles for schizophrenia, but linking associated alleles to specific risk genes remains challenging. Given that most alleles that influence liability to schizophrenia are thought to do so by altered gene expression, intuitively, case-control differential gene expression studies should highlight genes with a higher probability of being associated with schizophrenia and could help identify the most likely causal genes within associated loci. Here, we test this hypothesis by comparing transcriptome analysis of the dorsolateral prefrontal cortex from 563 schizophrenia cases and 802 controls with genome-wide association study (GWAS) data from the third wave study of the Psychiatric Genomics Consortium. Genes differentially expressed in schizophrenia were not enriched for common allelic association statistics compared with other brain-expressed genes, nor were they enriched for genes within associated loci previously reported to be prioritized by genetic fine-mapping. Genes prioritized by Summary-based Mendelian Randomisation were underexpressed in cases compared to other genes in the same GWAS loci. However, the overall strength and direction of expression change predicted by SMR were not related to that observed in the differential expression data. Overall, this study does not support the hypothesis that genes identified as differentially expressed from RNA sequencing of bulk brain tissue are enriched for those that show evidence for genetic associations. Such data have limited utility for prioritizing genes in currently associated loci in schizophrenia.Medical Research Council (MRC)National Institute of Mental Health (USA

    Exon expression in lymphoblastoid cell lines from subjects with schizophrenia before and after glucose deprivation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to examine the effects of glucose reduction stress on lymphoblastic cell line (LCL) gene expression in subjects with schizophrenia compared to non-psychotic relatives.</p> <p>Methods</p> <p>LCLs were grown under two glucose conditions to measure the effects of glucose reduction stress on exon expression in subjects with schizophrenia compared to unaffected family member controls. A second aim of this project was to identify cis-regulated transcripts associated with diagnosis.</p> <p>Results</p> <p>There were a total of 122 transcripts with significant diagnosis by probeset interaction effects and 328 transcripts with glucose deprivation by probeset interaction probeset effects after corrections for multiple comparisons. There were 8 transcripts with expression significantly affected by the interaction between diagnosis and glucose deprivation and probeset after correction for multiple comparisons. The overall validation rate by qPCR of 13 diagnosis effect genes identified through microarray was 62%, and all genes tested by qPCR showed concordant up- or down-regulation by qPCR and microarray. We assessed brain gene expression of five genes found to be altered by diagnosis and glucose deprivation in LCLs and found a significant decrease in expression of one gene, glutaminase, in the dorsolateral prefrontal cortex (DLPFC). One SNP with previously identified regulation by a 3' UTR SNP was found to influence IRF5 expression in both brain and lymphocytes. The relationship between the 3' UTR rs10954213 genotype and IRF5 expression was significant in LCLs (p = 0.0001), DLPFC (p = 0.007), and anterior cingulate cortex (p = 0.002).</p> <p>Conclusion</p> <p>Experimental manipulation of cells lines from subjects with schizophrenia may be a useful approach to explore stress related gene expression alterations in schizophrenia and to identify SNP variants associated with gene expression.</p

    Widespread sex differences in gene expression and splicing in the adult human brain

    Get PDF
    There is strong evidence to show that men and women differ in terms of neurodevelopment, neurochemistry and susceptibility to neurodegenerative and neuropsychiatric disease. The molecular basis of these differences remains unclear. Progress in this field has been hampered by the lack of genome-wide information on sex differences in gene expression and in particular splicing in the human brain. Here we address this issue by using post-mortem adult human brain and spinal cord samples originating from 137 neuropathologically confirmed control individuals to study whole-genome gene expression and splicing in 12 CNS regions. We show that sex differences in gene expression and splicing are widespread in adult human brain, being detectable in all major brain regions and involving 2.5% of all expressed genes. We give examples of genes where sex-biased expression is both disease-relevant and likely to have functional consequences, and provide evidence suggesting that sex biases in expression may reflect sex-biased gene regulatory structures

    Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein kinase C interacting protein (PKCI/HINT1) is a small protein belonging to the histidine triad (HIT) family proteins. Its brain immunoreactivity is located in neurons and neuronal processes. PKCI/HINT1 gene knockout (KO) mice display hyper-locomotion in response to D-amphetamine which is considered a positive symptom of schizophrenia in animal models. <it>Postmortem </it>studies identified PKCI/HINT1 as a candidate molecule for schizophrenia and bipolar disorder. We investigated the hypothesis that the PKCI/HINT1 gene may play an important role in regulating mood function in the CNS. We submitted PKCI/HINT1 KO mice and their wild type (WT) littermates to behavioral tests used to study anti-depressant, anxiety like behaviors, and goal-oriented behavior. Additionally, as many mood disorders coincide with modifications of hypothalamic-pituitary-adrenal (HPA) axis function, we assessed the HPA activity through measurement of plasma corticosterone levels.</p> <p>Results</p> <p>Compared to the WT controls, KO mice exhibited less immobility in the forced swim (FST) and the tail suspension (TST) tests. Activity in the TST tended to be attenuated by acute treatment with valproate at 300 mg/kg in KO mice. The PKCI/HINT1 KO mice presented less thigmotaxis in the Morris water maze and spent progressively more time in the lit compartment in the light/dark test. In a place navigation task, KO mice exhibited enhanced acquisition and retention. Furthermore, the afternoon basal plasma corticosterone level in PKCI/HINT1 KO mice was significantly higher than in the WT.</p> <p>Conclusion</p> <p>PKCI/HINT1 KO mice displayed a phenotype of behavioral and endocrine features which indicate changes of mood function, including anxiolytic-like and anti-depressant like behaviors, in conjunction with an elevated corticosterone level in plasma. These results suggest that the PKCI/HINT 1 gene could be important for the mood regulation function in the CNS.</p

    Protein Expression in the Nucleus Accumbens of Rats Exposed to Developmental Vitamin D Deficiency

    Get PDF
    Introduction: Developmental vitamin D (DVD) deficiency is a candidate risk factor for schizophrenia. Animal models have confirmed that DVD deficiency is associated with a range of altered genomic, proteomic, structural and behavioural outcomes in the rat. Because the nucleus accumbens has been implicated in neuropsychiatric disorders, in the current study we examined protein expression in this region in adult rats exposed to DVD deficienc

    GBR 12909 administration as a mouse model of bipolar disorder mania: mimicking quantitative assessment of manic behavior

    Get PDF
    Mania is a core feature of bipolar disorder (BD) that traditionally is assessed using rating scales. Studies using a new human behavioral pattern monitor (BPM) recently demonstrated that manic BD patients exhibit a specific profile of behavior that differs from schizophrenia and is characterized by increased motor activity, increased specific exploration, and perseverative locomotor patterns as assessed by spatial d. It was hypothesized that disrupting dopaminergic homeostasis by inhibiting dopamine transporter (DAT) function would produce a BD mania-like phenotype in mice as assessed by the mouse BPM. We compared the spontaneous locomotor and exploratory behavior of C57BL/6J mice treated with the catecholamine transporter inhibitor amphetamine or the selective DAT inhibitor GBR 12909 in the mouse BPM. We also assessed the duration of the effect of GBR 12909 by testing mice in the BPM for 3 h and its potential strain dependency by testing 129/SvJ mice. Amphetamine produced hyperactivity and increased perseverative patterns of locomotion as reflected in reduced spatial d values but reduced exploratory activity in contrast to the increased exploration observed in BD patients. GBR 12909 increased activity and reduced spatial d in combination with increased exploratory behavior, irrespective of inbred strain. These effects persisted for at least 3 h. Thus, selectively inhibiting the DAT produced a long-lasting cross-strain behavioral profile in mice that was consistent with that observed in manic BD patients. These findings support the use of selective DAT inhibition in animal models of the impaired dopaminergic homeostasis putatively involved in the pathophysiology of BD mania

    The DISC1 Pathway Modulates Expression of Neurodevelopmental, Synaptogenic and Sensory Perception Genes

    Get PDF
    Genetic and biological evidence supports a role for DISC1 across a spectrum of major mental illnesses, including schizophrenia and bipolar disorder. There is evidence for genetic interplay between variants in DISC1 and in biologically interacting loci in psychiatric illness. DISC1 also associates with normal variance in behavioral and brain imaging phenotypes.Here, we analyze public domain datasets and demonstrate correlations between variants in the DISC1 pathway genes and levels of gene expression. Genetic variants of DISC1, NDE1, PDE4B and PDE4D regulate the expression of cytoskeletal, synaptogenic, neurodevelopmental and sensory perception proteins. Interestingly, these regulated genes include existing targets for drug development in depression and psychosis.Our systematic analysis provides further evidence for the relevance of the DISC1 pathway to major mental illness, identifies additional potential targets for therapeutic intervention and establishes a general strategy to mine public datasets for insights into disease pathways

    No relationship between 2',3'-cyclic nucleotide 3'-phosphodiesterase and schizophrenia in the Chinese Han population: an expression study and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>2',3'-Cyclic nucleotide 3'-phosphodiesterase (<it>CNP</it>), one of the promising candidate genes for schizophrenia, plays a key part in the oligodendrocyte function and in myelination. The present study aims to investigate the relationship between <it>CNP </it>and schizophrenia in the Chinese population and the effect of different factors on the expression level of <it>CNP </it>in schizophrenia.</p> <p>Methods</p> <p>Five <it>CNP </it>single nucleotide polymorphisms (SNPs) were investigated in a Chinese Han schizophrenia case-control sample set (n = 180) using direct sequencing. The results were included in the following meta-analysis. Quantitative real-time polymerase chain reaction (PCR) was conducted to examine <it>CNP </it>expression levels in peripheral blood lymphocytes.</p> <p>Results</p> <p>Factors including gender, genotype, sub-diagnosis and antipsychotics-treatment were found not to contribute to the expression regulation of the <it>CNP </it>gene in schizophrenia. Our meta-analysis produced similar negative results.</p> <p>Conclusion</p> <p>The results suggest that the <it>CNP </it>gene may not be involved in the etiology and pathology of schizophrenia in the Chinese population.</p
    corecore