3,453 research outputs found

    Coexistence of superconductivity and a spin density wave in pnictides: Gap symmetry and nodal lines

    Full text link
    We investigate the effect of a spin-density wave (SDW) on s±s_{\pm} superconductivity in Fe-based superconductors. We show that, contrary to the common wisdom, no nodes open at the new, reconnected Fermi surfaces when the hole and electron pockets fold down in the SDW state, despite the fact that the s±s_{\pm} gap changes sign between the two pockets. Instead, the order parameter preserves its sign along the newly formed Fermi surfaces. The familiar experimental signatures of an s±s_{\pm} symmetry are still preserved, although they appear in a mathematically different way. For a regular ss case (s++)s_{++}) the nodes do appear in the SDW state. This distinction suggests a novel simple way to experimentally separate an s±s_{\pm} state from a regular ss in the pnictides. We argue that recently published thermal conductivity data in the coexisting state are consistent with the s±,s_{\pm}, but not the s++s_{++} state

    Phase sensitive noise in quantum dots under periodic perturbation

    Full text link
    We evaluate the ensemble averaged noise in a chaotic quantum dot subject to DC bias and a periodic perturbation of frequency Ω\Omega. The noise displays cusps at bias Vn=nΩ/eV_n=n\hbar\Omega/e that survive the average, even when the period of the perturbation is far shorter than the dwell time in the dot. These features are sensitive to the phase of the time-dependent scattering amplitudes of electrons to pass through the system.Comment: Published version. Improved discussion, with a few small typos correcte

    Compressibility of a 2D electron gas under microwave radiation

    Full text link
    Microwave irradiation of a two-dimensional electron gas (2DEG) produces a non-equilibrium distribution of electrons, and leads to oscillations in the dissipative part of the conductivity. We show that the same non-equilibrium electron distribution induces strong oscillations in the 2DEG compressibility measured by local probes. Local measurements of the compressibility are expected to provide information about the domain structure of the zero resistance state of a 2DEG under microwave radiation.Comment: v2: analysis of the wave-vector dependence of the compressibility added; discussion of the Hall conductivity removed (shifted to cond-mat/0409590 in a revised form

    Spin relaxation in quantum dots due to electron exchange with leads

    Full text link
    We calculate spin relaxation rates in lateral quantum dot systems due to electron exchange between dots and leads. Using rate equations, we develop a theoretical description of the experimentally observed electric current in the spin blockade regime of double quantum dots. Single expression fits the entire current profile and describes the structure of both the conduction peaks and of the suppressed (`valley') region. Extrinsic rates calculated here have to be taken into account for accurate extraction of intrinsic relaxation rates due to the spin-orbit and hyperfine spin scattering mechanisms from spin blockade measurements.Comment: 4+ pages, 3 figures, submitted to PR

    Magnetic penetration depth in the presence of a spin-density wave in multiband superconductors at zero temperature

    Full text link
    We present a theoretical description of the London penetration depth of a multi-band superconductor in the case when both superconducting and spin-density wave orders coexist. We focus on clean systems and zero temperature to emphasize the effect of the two competing orders. Our calculation shows that the supefluid density closely follows the evolution of the superconducting order parameter as doping is increased, saturating to a BCS value in the pure superconducting state. Furthermore, we predict a strong anisotropic in-pane penetration depth induced by the spin-density wave order.Comment: 7 pages, 4 figure

    Theory of microwave-induced oscillations in the magnetoconductivity of a 2D electron gas

    Full text link
    We develop a theory of magnetooscillations in the photoconductivity of a two-dimensional electron gas observed in recent experiments. The effect is governed by a change of the electron distribution function induced by the microwave radiation. We analyze a nonlinearity with respect to both the dc field and the microwave power, as well as the temperature dependence determined by the inelastic relaxation rate.Comment: Extended version of cond-mat/0310668. 12 pages, 4 figures. V2: published version (minor changes, Fig. 4 corrected, references added

    Dynamic Thermal Tomography: New Nde Technique to Reconstruct Inner Solids Structure Using Multiple IR Image Processing

    Get PDF
    Nondestructive evaluation (NDE) technique appeared as the natural consequence of materials analysis by using a variety of physical fields and particles which being propagated through the specimen are able to produce the image of its inner structure. Disadvantage of traditional “shadow” or “backscattered” images is that the “weak” details are scarcely seen on the background of “stronger” ones. This is why the introduction of the tomographic principles, allowing to “slice” the solid into individual layers, was viewed as a revolution in vision techniques (especially in X-ray imaging). Ultrasonic, ultra-high frequency and nuclear magnetic resonance tomography are under quick development now

    Radiation induced oscillations of the Hall resistivity in two-dimensional electron systems

    Full text link
    We consider the effect of microwave radiation on the Hall resistivity in two-dimension electron systems. It is shown that the photon-assisted impurity scattering of electrons can result in oscillatory dependences of both dissipative and Hall components of the conductivity and resistivity tensors on the ratio of radiation frequency to cyclotron frequency. The Hall resistivity can include a component induced by microwave radiation which is an even function of the magnetic field. The phase of the dissipative resistivity oscillations and the polarization dependence of their amplitude are compared with those of the Hall resistivity oscillations. The developed model can clarify the results of recent experimental observations of the radiation induced Hall effect.Comment: 4 pages, 1 figur

    Cherenkov Radiation from e+ee^+e^- Pairs and Its Effect on νe\nu_e Induced Showers

    Full text link
    We calculate the Cherenkov radiation from an e+ee^+e^- pair at small separations, as occurs shortly after a pair conversion. The radiation is reduced (compared to that from two independent particles) when the pair separation is smaller than the wavelength of the emitted light. We estimate the reduction in light in large electromagnetic showers, and discuss the implications for detectors that observe Cherenkov radiation from showers in the Earth's atmosphere, as well as in oceans and Antarctic ice.Comment: Final version, with minor changes, to appear in PRD. 5 pages with 4 figure
    corecore