5,457 research outputs found

    Stripe Disordering Transition

    Full text link
    We have recently begun Monte Carlo simulations of the dynamics of stripe phases in the cuprates. A simple model of spinodal decomposition of the holes allows us to incorporate Coulomb repulsion and coherency strains. We find evidence for a possible stripe disordering transition, at a temperature below the pseudogap onset. Experimental searches for such a transition can provide constraints for models of stripe formation.Comment: 4 pages LaTex, 2 ps figures (U. of Miami Conference HTS99

    Empathic Neural Responses Predict Group Allegiance.

    Get PDF
    Watching another person in pain activates brain areas involved in the sensation of our own pain. Importantly, this neural mirroring is not constant; rather, it is modulated by our beliefs about their intentions, circumstances, and group allegiances. We investigated if the neural empathic response is modulated by minimally-differentiating information (e.g., a simple text label indicating another's religious belief), and if neural activity changes predict ingroups and outgroups across independent paradigms. We found that the empathic response was larger when participants viewed a painful event occurring to a hand labeled with their own religion (ingroup) than to a hand labeled with a different religion (outgroup). Counterintuitively, the magnitude of this bias correlated positively with the magnitude of participants' self-reported empathy. A multivariate classifier, using mean activity in empathy-related brain regions as features, discriminated ingroup from outgroup with 72% accuracy; the classifier's confidence correlated with belief certainty. This classifier generalized successfully to validation experiments in which the ingroup condition was based on an arbitrary group assignment. Empathy networks thus allow for the classification of long-held, newly-modified and arbitrarily-formed ingroups and outgroups. This is the first report of a single machine learning model on neural activation that generalizes to multiple representations of ingroup and outgroup. The current findings may prove useful as an objective diagnostic tool to measure the magnitude of one's group affiliations, and the effectiveness of interventions to reduce ingroup biases

    SO(6)-Generalized Pseudogap Model of the Cuprates

    Full text link
    The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping from a pseudogap state in the underdoped cuprates to a superconducting state at optimal and overdoping reflects an underlying SO(6) instability structure of the (pi,0) saddle points. The pseudogap is probably not associated with superconductivity, but is related to competing nesting instabilities, which are responsible for the stripe phases. We earlier introduced a simple Ansatz of this competition in terms of a pinned Balseiro-Falicov (pBF) model of competing charge density wave and (s-wave) superconductivity. This model gives a good description of the phase diagram and the tunneling and photoemission spectra. Here, we briefly review these results, and discuss some recent developments: experimental evidence for a non-superconducting component to the pseudogap; and SO(6) generalizations of the pBF model, including flux phase and d-wave superconductivity.Comment: 6 pages LaTex, 4 ps figures (U. of Miami Conference HTS99

    Design of FIR digital filters for pulse shaping and channel equalization using time-domain optimization

    Get PDF
    Three algorithms are developed for designing finite impulse response digital filters to be used for pulse shaping and channel equalization. The first is the Minimax algorithm which uses linear programming to design a frequency-sampling filter with a pulse shape that approximates the specification in a minimax sense. Design examples are included which accurately approximate a specified impulse response with a maximum error of 0.03 using only six resonators. The second algorithm is an extension of the Minimax algorithm to design preset equalizers for channels with known impulse responses. Both transversal and frequency-sampling equalizer structures are designed to produce a minimax approximation of a specified channel output waveform. Examples of these designs are compared as to the accuracy of the approximation, the resultant intersymbol interference (ISI), and the required transmitted energy. While the transversal designs are slightly more accurate, the frequency-sampling designs using six resonators have smaller ISI and energy values

    Feasibility demonstration for electroplating ultra-thin polyimide film

    Get PDF
    The effect of electrodeposition variables on film thickness was investigated using a dilute polyimide solution as a bath into which aluminum (as foil or as a vapor deposited coating) was immersed. The electrodeposited film was dried for 2 hours at 93 C (primarily to remove solvent) and cured for 18 hours at 186 C. Infrared studies indicate that imide formation (curing) occurs at 149 C under vacuum. From a conceptual viewpoint, satisfactory film metallized on one side can be obtained by this method. The cured ultra thin polyimide film exhibits properties equivalent to those of commercial film, and the surface appearance of the strippable polyimide film compares favorably with that of a sample of commercial film of thicker gauge. The feasibility of manufacturing approximately one million sq m of ultra thin film capable of being joined to fabricate an 800 m by 9 800 m square from starting material 0.5 to 1 m wide for space erectable structures was demonstrated

    Theoretical results on the double-collecting tandem junction solar cell

    Get PDF
    Results of computer calculations using a one dimensional model of the silicon tandem junction solar cell with both front and back current collection are presented. Using realistically achievable geometrical and material parameters, the model predicts that with base widths of 50 micrometers and 100 micrometers and base resistivities between 1 ohm/cm and 20 ohm/cm, beginning of life efficiencies of 14% to 17% and end of life efficiencies of 12% to 14%, after about seven years in synchronous orbit, can be obtained

    Radar, Insect Population Ecology, and Pest Management

    Get PDF
    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives
    corecore