458 research outputs found

    Molecular propensity as a driver for explorative reactivity studies

    Full text link
    Quantum chemical studies of reactivity involve calculations on a large number of molecular structures and comparison of their energies. Already the set-up of these calculations limits the scope of the results that one will obtain, because several system-specific variables such as the charge and spin need to be set prior to the calculation. For a reliable exploration of reaction mechanisms, a considerable number of calculations with varying global parameters must be taken into account, or important facts about the reactivity of the system under consideration can go undetected. For example, one could miss crossings of potential energy surfaces for different spin states or might not note that a molecule is prone to oxidation. Here, we introduce the concept of molecular propensity to account for the predisposition of a molecular system to react across different electronic states in certain nuclear configurations. Within our real-time quantum chemistry framework, we developed an algorithm that allows us to be alerted to such a propensity of a system under consideration.Comment: 10 pages, 7 figure

    Exploration of Reaction Pathways and Chemical Transformation Networks

    Full text link
    For the investigation of chemical reaction networks, the identification of all relevant intermediates and elementary reactions is mandatory. Many algorithmic approaches exist that perform explorations efficiently and automatedly. These approaches differ in their application range, the level of completeness of the exploration, as well as the amount of heuristics and human intervention required. Here, we describe and compare the different approaches based on these criteria. Future directions leveraging the strengths of chemical heuristics, human interaction, and physical rigor are discussed.Comment: 48 pages, 4 figure

    Interactive Chemical Reactivity Exploration

    Full text link
    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. We employ a haptic pointer device with force-feedback to allow the operator the direct manipulation of structures in three dimensions along with simultaneous perception of the quantum mechanical response upon structure modification as forces. We elaborate on the details of how such an interactive exploration should proceed and which technical difficulties need to be overcome. All reactivity-exploration concepts developed for this purpose have been implemented in the Samson programming environment.Comment: 36 pages, 14 figure

    Se préparer à sa mort : la dignité en question. Rencontres avec des adhérents de l'association EXIT A.D.M.D. Suisse romande

    Get PDF

    ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness.

    Get PDF
    Wakefulness is accompanied by experience-dependent synaptic plasticity and an increase in activity-regulated gene transcription. Wake-induced genes are certainly markers of neuronal activity and may also directly regulate the duration of and need for sleep. We stimulated murine cortical cultures with the neuromodulatory signals that are known to control wakefulness in the brain and found that norepinephrine alone or a mixture of these neuromodulators induced activity-regulated gene transcription. Pharmacological inhibition of the various signaling pathways involved in the regulation of gene expression indicated that the extracellular signal-regulated kinase (ERK) pathway is the principal one mediating the effects of waking neuromodulators on gene expression. In mice, ERK phosphorylation in the cortex increased and decreased with wakefulness and sleep. Whole-body or cortical neuron-specific deletion of Erk1 or Erk2 significantly increased the duration of wakefulness in mice, and pharmacological inhibition of ERK phosphorylation decreased sleep duration and increased the duration of wakefulness bouts. Thus, this signaling pathway, which is highly conserved from Drosophila to mammals, is a key pathway that links waking experience-induced neuronal gene expression to sleep duration and quality

    Development and validation of a postmortem radiological alteration index: the RA-Index

    Get PDF
    This study aimed to derive an index quantifying the state of alteration of cadavers by quantifying the presence of gas in the body using postmortem multidetector computed tomography (MDCT) imaging, and to validate the index by defining its sensitivity and specificity. The RA (radiological alteration)-index was derived from postmortem MDCT data from 118 nontraumatically deceased people. To validate the index, 100 additional scanned bodies (50 % traumatically deceased) were retrospectively examined by two independent observers. Presence of gas at 82 sites was assessed by a radiologist, whereas a forensic pathologist only investigated the seven sites used for the RA-index. The RA-index was highly correlated to the overall presence of gas in all 82 sites (R2 = 0.98 in the derivation set and 0.85 in the validation set). Semiquantitative evaluation of gas presence in each site showed moderate reliability (Cohen's kappa range, 0.41-0.78); nevertheless, the overall RA-index was very reliable (ICC2,1 = 0.95; 95 % CI 0.92-0.96). Examiner using the RA-index detected heart cavities full of gas with a sensitivity of 100 % (95 % CI 51.7-100) and a specificity of 98.8 % (92.6-99.9). We conclude that determining the presence of gas at seven sites is a valid means to measure the distribution of gas due to cadaveric alteration in the entire body. The RA-index is rapid, easy-to-use, and reliable for nonexperienced users, and it is a valid method to suspect the normal presence of gas from cadaveric alteration. MDCT can be used to screen for gas embolism and to give indications for gas composition analysis (gas chromatography
    corecore