458 research outputs found
Molecular propensity as a driver for explorative reactivity studies
Quantum chemical studies of reactivity involve calculations on a large number
of molecular structures and comparison of their energies. Already the set-up of
these calculations limits the scope of the results that one will obtain,
because several system-specific variables such as the charge and spin need to
be set prior to the calculation. For a reliable exploration of reaction
mechanisms, a considerable number of calculations with varying global
parameters must be taken into account, or important facts about the reactivity
of the system under consideration can go undetected. For example, one could
miss crossings of potential energy surfaces for different spin states or might
not note that a molecule is prone to oxidation. Here, we introduce the concept
of molecular propensity to account for the predisposition of a molecular system
to react across different electronic states in certain nuclear configurations.
Within our real-time quantum chemistry framework, we developed an algorithm
that allows us to be alerted to such a propensity of a system under
consideration.Comment: 10 pages, 7 figure
Exploration of Reaction Pathways and Chemical Transformation Networks
For the investigation of chemical reaction networks, the identification of
all relevant intermediates and elementary reactions is mandatory. Many
algorithmic approaches exist that perform explorations efficiently and
automatedly. These approaches differ in their application range, the level of
completeness of the exploration, as well as the amount of heuristics and human
intervention required. Here, we describe and compare the different approaches
based on these criteria. Future directions leveraging the strengths of chemical
heuristics, human interaction, and physical rigor are discussed.Comment: 48 pages, 4 figure
Interactive Chemical Reactivity Exploration
Elucidating chemical reactivity in complex molecular assemblies of a few
hundred atoms is, despite the remarkable progress in quantum chemistry, still a
major challenge. Black-box search methods to find intermediates and
transition-state structures might fail in such situations because of the
high-dimensionality of the potential energy surface. Here, we propose the
concept of interactive chemical reactivity exploration to effectively introduce
the chemist's intuition into the search process. We employ a haptic pointer
device with force-feedback to allow the operator the direct manipulation of
structures in three dimensions along with simultaneous perception of the
quantum mechanical response upon structure modification as forces. We elaborate
on the details of how such an interactive exploration should proceed and which
technical difficulties need to be overcome. All reactivity-exploration concepts
developed for this purpose have been implemented in the Samson programming
environment.Comment: 36 pages, 14 figure
Technical Comment on "Saccadic eye movement performance as an indicator of driving ability in elderly drivers".
ISSN:1424-7860ISSN:1424-399
ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness.
Wakefulness is accompanied by experience-dependent synaptic plasticity and an increase in activity-regulated gene transcription. Wake-induced genes are certainly markers of neuronal activity and may also directly regulate the duration of and need for sleep. We stimulated murine cortical cultures with the neuromodulatory signals that are known to control wakefulness in the brain and found that norepinephrine alone or a mixture of these neuromodulators induced activity-regulated gene transcription. Pharmacological inhibition of the various signaling pathways involved in the regulation of gene expression indicated that the extracellular signal-regulated kinase (ERK) pathway is the principal one mediating the effects of waking neuromodulators on gene expression. In mice, ERK phosphorylation in the cortex increased and decreased with wakefulness and sleep. Whole-body or cortical neuron-specific deletion of Erk1 or Erk2 significantly increased the duration of wakefulness in mice, and pharmacological inhibition of ERK phosphorylation decreased sleep duration and increased the duration of wakefulness bouts. Thus, this signaling pathway, which is highly conserved from Drosophila to mammals, is a key pathway that links waking experience-induced neuronal gene expression to sleep duration and quality
Development and validation of a postmortem radiological alteration index: the RA-Index
This study aimed to derive an index quantifying the state of alteration of cadavers by quantifying the presence of gas in the body using postmortem multidetector computed tomography (MDCT) imaging, and to validate the index by defining its sensitivity and specificity. The RA (radiological alteration)-index was derived from postmortem MDCT data from 118 nontraumatically deceased people. To validate the index, 100 additional scanned bodies (50 % traumatically deceased) were retrospectively examined by two independent observers. Presence of gas at 82 sites was assessed by a radiologist, whereas a forensic pathologist only investigated the seven sites used for the RA-index. The RA-index was highly correlated to the overall presence of gas in all 82 sites (R2 = 0.98 in the derivation set and 0.85 in the validation set). Semiquantitative evaluation of gas presence in each site showed moderate reliability (Cohen's kappa range, 0.41-0.78); nevertheless, the overall RA-index was very reliable (ICC2,1 = 0.95; 95 % CI 0.92-0.96). Examiner using the RA-index detected heart cavities full of gas with a sensitivity of 100 % (95 % CI 51.7-100) and a specificity of 98.8 % (92.6-99.9). We conclude that determining the presence of gas at seven sites is a valid means to measure the distribution of gas due to cadaveric alteration in the entire body. The RA-index is rapid, easy-to-use, and reliable for nonexperienced users, and it is a valid method to suspect the normal presence of gas from cadaveric alteration. MDCT can be used to screen for gas embolism and to give indications for gas composition analysis (gas chromatography
- …