136 research outputs found

    Surface composition of the Co-Cr based alloys after different lab denture treatments using auger electron spectroscopy

    Get PDF
    ΠœΠ΅Ρ‚ΠΎΡŽ Π΄Π°Π½ΠΎΡ— Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Ρ” Π°Π½Π°Π»Ρ–Π· Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ складу ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– сплаву Π½Π° основі Co-Cr після Π΄Π΅ΠΊΡ–Π»ΡŒΠΊΠΎΡ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€, прийнятих Ρƒ стоматологічній ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ†Ρ– Π·Π° допомогою ΠΎΠΆΠ΅-Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΡ— спСктроскопії (ΠžΠ•Π‘). Π¦Π΅ΠΉ Π°Π½Π°Π»Ρ–Π· ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ після відливання Π·Ρ€Π°Π·ΠΊΡ–Π² сплавів ΠΏΡ–Π΄Π΄Π°Π²Π°Π»ΠΈ наступним послідовним ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠ°ΠΌ: розрізанням Π½Π° Π°Π»ΠΌΠ°Π·Π½ΠΎΠΌΡƒ колСсі, СлСктроіскровим різанням Ρ– ΡˆΠ»Ρ–Ρ„ΡƒΠ²Π°Π½Π½ΡΠΌ, СлСктрополірування, Π²ΠΈΡ‚Ρ€ΠΈΠΌΠΊΠΈ Π² ΡˆΡ‚ΡƒΡ‡Π½Ρ–ΠΉ слині 2 Π΄Π½Ρ– після СлСктрополірування

    Interdiffusion in Au(120Β nm)/Ni(70Β nm) thin films at the low-temperature annealing in the different atmospheres

    Get PDF
    AbstractThe development of the interdiffusion processes and the surface morphology changes in thin films of Au(120Β nm)/Ni(70Β nm) during annealing at 200Β Β°C for 20Β min in vacuum with different residual atmosphere pressures of 10βˆ’3 and 10βˆ’6Β Pa and in an environment of hydrogen at a pressure of 5Β Γ—Β 102Β Pa have been studied. Secondary ion mass spectrometry, Auger electron spectroscopy, X-ray diffraction, optical microscopy, atomic force microscopy and scanning electron microscopy were used. Surface microdefects that form in the films are related to the local oxidation of nickel and to the stress that arises due to interdiffusion. Defect formation and reactions at the surface are found to be controlling factors in the transport of nickel to the surface and in the observed morphology

    The Distribution of Bar and Spiral Strengths in Disk Galaxies

    Full text link
    The distribution of bar strengths in disk galaxies is a fundamental property of the galaxy population that has only begun to be explored. We have applied the bar/spiral separation method of Buta, Block, and Knapen to derive the distribution of maximum relative gravitational bar torques, Q_b, for 147 spiral galaxies in the statistically well-defined Ohio State University Bright Galaxy Survey (OSUBGS) sample. Our goal is to examine the properties of bars as independently as possible of their associated spirals. We find that the distribution of bar strength declines smoothly with increasing Q_b, with more than 40% of the sample having Q_b <= 0.1. In the context of recurrent bar formation, this suggests that strongly-barred states are relatively short-lived compared to weakly-barred or non-barred states. We do not find compelling evidence for a bimodal distribution of bar strengths. Instead, the distribution is fairly smooth in the range 0.0 <= Q_b < 0.8. Our analysis also provides a first look at spiral strengths Q_s in the OSU sample, based on the same torque indicator. We are able to verify a possible weak correlation between Q_s and Q_b, in the sense that galaxies with the strongest bars tend also to have strong spirals.Comment: Accepted for publication in the Astronomical Journal, August 2005 issue (LaTex, 23 pages + 11 figures, uses aastex.cls

    The Impact of Initial-Final Mass Relations on Black Hole Microlensing

    Full text link
    Uncertainty in the initial-final mass relation (IFMR) has long been a problem in understanding the final stages of massive star evolution. One of the major challenges of constraining the IFMR is the difficulty of measuring the mass of non-luminous remnant objects (i.e. neutron stars and black holes). Gravitational wave detectors have opened the possibility of finding large numbers of compact objects in other galaxies, but all in merging binary systems. Gravitational lensing experiments using astrometry and photometry are capable of finding compact objects, both isolated and in binaries, in the Milky Way. In this work we improve the PopSyCLE microlensing simulation code in order to explore the possibility of constraining the IFMR using the Milky Way microlensing population. We predict that the Roman Space Telescope's microlensing survey will likely be able to distinguish different IFMRs based on the differences at the long end of the Einstein crossing time distribution and the small end of the microlensing parallax distribution, assuming the small (Ο€E≲0.02\pi_E \lesssim 0.02) microlensing parallaxes characteristic of black hole lenses are able to be measured accurately. We emphasize that future microlensing surveys need to be capable of characterizing events with small microlensing parallaxes in order to place the most meaningful constraints on the IFMR.Comment: 24 pages, 17 figures Accepted to Ap

    The boundaries and their impact on properties of zirconia electrolyte

    No full text
    Interfaces and their complexions created in the zirconia 1Ce10ScSZ ceramic electrolyte and altered by three powder types and sintering temperatures were studied via their effect on mechanical behavior and electrical conductivity. Two boundary complexions, which exist and developed between subgrains and grains with sintering temperature were observed. The transition between boundary categories, which was defined as the boundary complexion transition of the second kind, occurs in both very pure 1Ce10ScSZ ceramics and in ceramics of technical purity, powder of which is contaminated with rather large amounts of silica and titania. The ceramics contaminated with rather large amount of silica and alumina does not reveal any complexion transitions. Joint analysis of data obtained with electron microscopy and related techniques, mechanical tests for strength, scanning electron fractography and impedance spectroscopy of structural constituents of electrical resistance has given a lot of information on the effect of boundaries and their complexions on properties of electrolyte where mechanical behavior is as important as their conductivity.ΠœΠ΅ΠΆΡ– Ρ‚Π° Ρ—Ρ…Π½Ρ– комплСкси Π² ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½ΠΎΠΌΡƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ»Ρ–Ρ‚Ρ– 1Ce10ScSZ, які Π±ΡƒΠ»ΠΈ ΡƒΡ‚Π²ΠΎΡ€Π΅Π½Ρ– Ρ– Π·ΠΌΡ–Π½ΡŽΠ²Π°Π½Ρ– застосуванням Ρ‚Ρ€ΡŒΠΎΡ… Ρ‚ΠΈΠΏΡ–Π² Π²ΠΈΡ…Ρ–Π΄Π½ΠΈΡ… ΠΏΠΎΡ€ΠΎΡˆΠΊΡ–Π² Ρ– Ρ€Ρ–Π·Π½ΠΈΡ… Ρ€Π΅ΠΆΠΈΠΌΡ–Π² спікання, Π²ΠΈΠ²Ρ‡Π΅Π½Ρ– Ρ‡Π΅Ρ€Π΅Π· Ρ—Ρ…Π½Ρ–ΠΉ Π²ΠΏΠ»ΠΈΠ² Π½Π° ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½Ρƒ ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΡƒ Ρ‚Π° Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΏΡ€ΠΎΠ²Ρ–Π΄Π½Ρ–ΡΡ‚ΡŒ. Π‘ΠΏΡ–Π»ΡŒΠ½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· Π΄Π°Π½ΠΈΡ…, ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΡ— мікроскопії Ρ‚Π° Ρ–Π½ΡˆΠΈΠΌΠΈ, пов’язаними Ρ–Π· нСю, ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΡ… Π²ΠΈΠΏΡ€ΠΎΠ±ΡƒΠ²Π°Π½ΡŒ Π½Π° ΠΌΡ–Ρ†Π½Ρ–ΡΡ‚ΡŒ, ΡΠΊΠ°Π½ΡƒΡŽΡ‡ΠΎΡ— Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΡ— Ρ„Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ— Ρ‚Π° імпСдансної спСктроскопії структурних складових Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΎΠΏΠΎΡ€Ρƒ, Π½Π°Π΄Π°Π² Π±Π°Π³Π°Ρ‚ΠΎ Ρ–Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ— Ρ‰ΠΎΠ΄ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ ΠΌΠ΅ΠΆ Ρ‚Π° Ρ—Ρ…Π½Ρ–Ρ… комплСксів Π½Π° властивості Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ»Ρ–Ρ‚Ρƒ, для якого ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½Π° ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΠ° Ρ” Π½Π°ΡΡ‚Ρ–Π»ΡŒΠΊΠΈ ваТливою, як Ρ– ΠΉΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ²Ρ–Π΄Π½Ρ–ΡΡ‚ΡŒ. БпостСрСТСно корСлятивний Π²ΠΏΠ»ΠΈΠ² ΠΌΠ΅ΠΆ, які Π²ΠΈΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡŒΡΡ Π²ΠΈΡ…Ρ–Π΄Π½ΠΈΠΌΠΈ Ρ‚ΠΈΠΏΠ°ΠΌΠΈ ΠΏΠΎΡ€ΠΎΡˆΠΊΡ–Π² Ρ‚Π° Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΡŽ Ρ—Ρ…Π½ΡŒΠΎΠ³ΠΎ спікання, Π½Π° ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½Ρƒ ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΡƒ Ρ– Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Ρƒ ΠΏΡ€ΠΎΠ²Ρ–Π΄Π½Ρ–ΡΡ‚ΡŒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ»Ρ–Ρ‚Ρƒ. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ Π΄Π²Π° Ρ‚ΠΈΠΏΠΈ ΠΌΠ΅ΠΆΠ΅Π²ΠΈΡ… комплСксів, які Ρ–ΡΠ½ΡƒΡŽΡ‚ΡŒ Ρ– Ρ€ΠΎΠ·Π²ΠΈΠ²Π°ΡŽΡ‚ΡŒΡΡ ΠΌΡ–ΠΆ субзСрнами Ρ‚Π° Π·Π΅Ρ€Π½Π°ΠΌΠΈ Π· ростом Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ спікання. ΠŸΠ΅Ρ€Π΅Ρ…Ρ–Π΄ ΠΌΡ–ΠΆ Ρ†ΠΈΠΌΠΈ катСгоріями ΠΌΠ΅ΠΆ, Ρ‰ΠΎ Π±ΡƒΠ»ΠΎ Π½Π°Π·Π²Π°Π½ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΎΠΌ ΠΌΠ΅ΠΆΠ΅Π²ΠΈΡ… комплСксів Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Ρƒ, Π²Ρ–Π΄Π±ΡƒΠ²Π°Ρ”Ρ‚ΡŒΡΡ як Π² Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎ чистій ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ†Ρ– 1Ce10ScSZ, Ρ‚Π°ΠΊ Ρ– Π² ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ†Ρ– Ρ‚Π΅Ρ…Π½Ρ–Ρ‡Π½ΠΎΡ— чистоти, ΠΏΠΎΡ€ΠΎΡˆΠΊΠΈ якої Π·Π±Π°Π³Π°Ρ‡Π΅Π½Ρ– Π΄ΠΎΡΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡Π½ΠΎΡŽ ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŽ оксидів ΠΊΡ€Π΅ΠΌΠ½Ρ–ΡŽ Ρ‚Π° Ρ‚ΠΈΡ‚Π°Π½Ρƒ. Π’ ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ†Ρ– 1Ce10ScSZ Π· Π²Π΅Π»ΠΈΠΊΠΈΠΌ вмістом оксидів ΠΊΡ€Π΅ΠΌΠ½Ρ–ΡŽ Ρ‚Π° Π°Π»ΡŽΠΌΡ–Π½Ρ–ΡŽ ΠΏΠΎΠΌΡ–Ρ‚Π½ΠΈΡ… ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Ρ–Π² Π½Π΅ виявлСно.ΠžΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π² кСрамичСском элСктролитС 1Ce10ScSZ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ ΠΈ ΠΈΡ… комплСксы, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Π½Ρ‹Π΅ посрСдством контроля Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ спСкания с использованиСм исходных ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² Ρ‚Ρ€Ρ‘Ρ… Ρ‚ΠΈΠΏΠΎΠ², исслСдовали, анализируя ΠΈΡ… влияниС Π½Π° мСханичСскоС ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ. КомплСксная ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π΄Π°Π½Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ элСктронной микроскопии ΠΈ Π΄Ρ€ΠΈΠ³ΠΈΠΌΠΈ, связаннными с Π½Π΅ΠΉ, ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ мСханичСских испытаний Π½Π° ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ, ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ элСктронной Ρ„Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ импСдансной спСктроскопиСй структурных ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… элСктричСского сопротивлСния, прСдоставила ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΎ влиянии Π³Ρ€Π°Π½ΠΈΡ† ΠΈ ΠΈΡ… соСдинСний Π½Π° свойства элСктролита, для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ мСханичСскоС ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ Π²Π°ΠΆΠ½ΠΎ, ΠΊΠ°ΠΊ ΠΈ Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ. Наблюдалась коррСляция ΠΌΠ΅ΠΆΠ΄Ρƒ влияниСм Π³Ρ€Π°Π½ΠΈΡ†, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… исходными ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°ΠΌΠΈ Ρ‚Ρ€Ρ‘Ρ… Ρ‚ΠΈΠΏΠΎΠ² ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΠΉ ΠΈΡ… спСкания, Π½Π° мСханичСскоС ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ элСктролита 1Ce10ScSZ. НайдСно Π΄Π²Π΅ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Ρ… комплСксов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠ°ΡŽΡ‚ΡΡ с ростом Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ спСкания ΠΌΠ΅ΠΆΠ΄Ρƒ субзСрнами ΠΈ Π·Π΅Ρ€Π½Π°ΠΌΠΈ. ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΌΠ΅ΠΆΠ΄Ρƒ Π²ΠΈΠ΄Π°ΠΌΠΈ Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Ρ… комплСксов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π±Ρ‹Π» ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ ΠΊΠ°ΠΊ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π°, происходит ΠΊΠ°ΠΊ Π² химичСски чистой ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠ΅ 1Ce10ScSZ, Ρ‚Π°ΠΊ ΠΈ Π² ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠ΅ тСхничСской чистоты ΠΈΠ· ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ², ΠΎΠ±ΠΎΠ³Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… оксидами крСмния ΠΈ Ρ‚ΠΈΡ‚Π°Π½Π°. Π’ ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠ΅ 1Ce10ScSZ содСрТащСй Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ количСства оксидов крСмния ΠΈ алюминия, ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Ρ‹ Π½Π΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹

    ЦикличСский Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ измСнСния микротвСрдости алюминиСвого сплава Π”16 ΠΏΠΎΠ΄ дСйствиСм ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΉ ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ

    Get PDF
    ДослідТСно моТливості Π±Ρ–Π»ΡŒΡˆ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ, порівняно Ρ–Π· Ρ‚Ρ€Π°Π΄ΠΈΡ†Ρ–ΠΉΠ½ΠΎΡŽ Ρ‚Π΅Ρ€ΠΌΠΎΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΡŽ ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΎΡŽ, зміцнСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Π»Π΅Π³ΠΊΠΈΡ… конструкційних сплавів ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΡŽ ΡƒΠ΄Π°Ρ€Π½ΠΎΡŽ ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΎΡŽ (Π£Π—Π£Πž) Π½Π° ΠΏΠΎΠ²Ρ–Ρ‚Ρ€Ρ– Π·Π° ΡƒΠΌΠΎΠ² ΠΊΠ²Π°Π·Ρ–-гідростатичного стиснСння Π·Ρ€Π°Π·ΠΊΠ°. На ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Ρ– промислового Π°Π»ΡŽΠΌΡ–Π½Ρ–Ρ”Π²ΠΎΠ³ΠΎ сплаву Π”16 ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ ΡƒΠ½Ρ–ΠΊΠ°Π»ΡŒΠ½Ρƒ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ зміцнСння ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– (Π΄ΠΎ ∼600 %), Π·ΡƒΠΌΠΎΠ²Π»Π΅Π½ΠΎΠ³ΠΎ синСргСтичним Π²ΠΏΠ»ΠΈΠ²ΠΎΠΌ процСсі Π½ΠΈΠ·ΡŒΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΡ— ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΡ— наноструктуризації Ρ‚Π° ΠΌΠ΅Ρ…Π°Π½ΠΎΡ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΡ— Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Π°Π»ΡŽΠΌΡ–Π½Ρ–ΡŽ Ρ–Π· киснСм ΠΏΡ–Π΄ Π΄Ρ–Ρ”ΡŽ Π£Π—Π£Πž. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ якісну модСль формування оксидного покриття Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½ΠΎΡŽ ΠΊΡ–Π»ΡŒΠΊΠ° дСсятків ΠΌΡ–ΠΊΡ€ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–Π². Π— використанням комплСксу Ρ„Ρ–Π·ΠΈΡ‡Π½ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² дослідТСння встановлСно основні закономірності формування Ρ„Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ Ρ– Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ складу, структури Ρ‚Π° ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΡ… властивостСй ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΈΡ… ΡˆΠ°Ρ€Ρ–Π² сплаву Π”16 Π·Π°Π»Π΅ΠΆΠ½ΠΎ Π²Ρ–Π΄ Π°ΠΌΠΏΠ»Ρ–Ρ‚ΡƒΠ΄ΠΈ Ρ‚Π° тривалості ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ. Показано, Ρ‰ΠΎ Ρ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΈΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Π·ΠΌΡ–Π½ мікротвСрдості Π·ΡƒΠΌΠΎΠ²Π»ΡŽΡ”Ρ‚ΡŒΡΡ ΠΏΠ΅Ρ€Π΅Π±Ρ–Π³ΠΎΠΌ дисипативних процСсів Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ повСрнСння Ρ‚Π° Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΎΡ— рСкристалізації. Π—Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… Ρ€Π΅ΠΆΠΈΠΌΡ–Π² Π£Π—Π£Πž Π·Π½ΠΎΡΠΎΡΡ‚Ρ–ΠΉΠΊΡ–ΡΡ‚ΡŒ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΈΡ… ΡˆΠ°Ρ€Ρ–Π² зростає Ρƒ 2,5 Ρ€Π°Π·Ρƒ, Ρ€Ρ–Π²Π΅Π½ΡŒ Π·Π°Π»ΠΈΡˆΠΊΠΎΠ²ΠΈΡ… ΠΌΠ°ΠΊΡ€ΠΎΠ½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΡŒ стиснСння Π΄ΠΎΡ€Ρ–Π²Π½ΡŽΡ” 650 МПа.The article studies possibilities of more effective surface hardening as compared with conventional thermomechanical processing. Specifically, we provide the insight into surface hardening of light structural alloys by ultrasonic impact treatment (UIT) in air under quasi-hydrostatic pressure of the sample. By example of the commercial aluminum alloy D16 we demonstrate the unique opportunity to harden the surface (up to ~600 %) using the synergistic effect of low-temperature processes of mechanical nanostructuring as well as mechanical and chemical interaction of aluminum with oxygen under the influence of UIT. We propose the qualitative model for formation of oxide coating several tens of micrometers thick. By employing a set of physical methods we establish basic laws of the phase formation and chemical composition, structure and mechanical properties of the D16 alloy surface layers depending on the amplitude and duration of UIT. We show that the development of dynamic recovery and dynamic recrystallization processes causes the cyclic nature of microhardness changes. Under optimal conditions of UIT the wear resistance of surface layers increased by ~2,5 times, and the compression residual stresses level is 650 MPa.Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ возмоТности Π±ΠΎΠ»Π΅Π΅ эффСктивного, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎ тСрмомСханичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ, упрочнСния повСрхности Π»Π΅Π³ΠΊΠΈΡ… конструкционных сплавов ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΉ ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ (Π£Π—Π£Πž) Π½Π° Π²ΠΎΠ·Π΄ΡƒΡ…Π΅ Π² условиях квазигидростатичСского сТатия ΠΎΠ±Ρ€Π°Π·Ρ†Π°. На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΠ³ΠΎ алюминиСвого сплава Π”16 ΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ упрочнСния повСрхности (Π΄ΠΎ ∼ 600 %), обусловлСнного синСргСтичСским влияниСм процСссов Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠΉ мСханичСской наноструктуризации ΠΈ мСханохимичСского взаимодСйствия алюминия с кислородом ΠΏΠΎΠ΄ дСйствиСм Π£Π—Π£Πž. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° качСствСнная модСль формирования оксидного покрытия Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ нСсколько дСсятков ΠΌΠΈΠΊΡ€ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ². Π‘ использованиСм комплСкса физичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² исслСдования установлСны основныС закономСрности формирования Ρ„Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ ΠΈ химичСского состава, структуры ΠΈ мСханичСских свойств повСрхностных слоСв сплава Π”16 Π² зависимости ΠΎΡ‚ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹ ΠΈ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ. Показано, Ρ‡Ρ‚ΠΎ цикличСский Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ микротвСрдости обусловлСн Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ диссипативных процСссов динамичСского Π²ΠΎΠ·Π²Ρ€Π°Ρ‚Π° ΠΈ динамичСской рСкристаллизации. ΠŸΡ€ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… Π£Π—Π£Πž ΠΈΠ·Π½ΠΎΡΠΎΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ повСрхностных слоСв возрастаСт Π² 2,5 Ρ€Π°Π·Π°, ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ остаточных макронапряТСний сТатия Ρ€Π°Π²Π΅Π½ 650 МПа

    Early-Time Ultraviolet and Optical Hubble Space Telescope Spectroscopy of the Type II Supernova 2022wsp

    Full text link
    We report early-time ultraviolet (UV) and optical spectroscopy of the young, nearby Type II supernova (SN) 2022wsp obtained by the Hubble Space Telescope (HST)/STIS at about 10 and 20 days after the explosion. The SN 2022wsp UV spectra are compared to those of other well-observed Type II/IIP SNe, including the recently studied Type IIP SN 2021yja. Both SNe exhibit rapid cooling and similar evolution during early phases, indicating a common behavior among SNe II. Radiative-transfer modeling of the spectra of SN 2022wsp with the TARDIS code indicates a steep radial density profile in the outer layer of the ejecta, a supersolar metallicity, and a relatively high total extinction of E(B-V) = 0.35 mag. The early-time evolution of the photospheric velocity and temperature derived from the modeling agree with the behavior observed from other previously studied cases. The strong suppression of hydrogen Balmer lines in the spectra suggests interaction with a pre-existing circumstellar environment could be occurring at early times. In the SN 2022wsp spectra, the absorption component of the Mg II P Cygni profile displays a double-trough feature on day +10 that disappears by day +20. The shape is well reproduced by the model without fine-tuning the parameters, suggesting that the secondary blueward dip is a metal transition that originates in the SN ejecta.Comment: Submitted to ApJ Letters on 4/11/202

    Early-time Spectropolarimetry of the Asymmetric Type II Supernova SN 2023ixf

    Full text link
    We present six epochs of optical spectropolarimetry of the Type II supernova (SN) 2023ixf ranging from ∼\sim 2 to 15 days after the explosion. Polarimetry was obtained with the Kast double spectrograph on the Shane 3 m telescope at Lick Observatory, representing the earliest such observations ever captured for an SN. We observe a high continuum polarization pcontβ‰ˆ1p_{\text{cont}} \approx 1 % on days +1.4 and +2.5 before dropping to 0.5 % on day +3.5, persisting at that level up to day +14.5. Remarkably, this change coincides temporally with the disappearance of highly ionized "flash" features. The decrease of the continuum polarization is accompanied by a ∼70∘\sim 70^\circ rotation of the polarization position angle (PAPA) as seen across the continuum. The early evolution of the polarization may indicate different geometric configurations of the electron-scattering atmosphere as seen before and after the disappearance of the emission lines associated with highly-ionized species (e.g., He II, C IV, N III), which are likely produced by elevated mass loss shortly prior to the SN explosion. We interpret the rapid change of polarization and PAPA from days +2.5 to +4.5 as the time when the SN ejecta emerge from the dense asymmetric circumstellar material (CSM). The temporal evolution of the continuum polarization and the PAPA is consistent with an aspherical SN explosion that exhibits a distinct geometry compared to the CSM. The rapid follow-up spectropolarimetry of SN 2023ixf during the shock ionization phase reveals an exceptionally asymmetric mass-loss process leading up to the explosion.Comment: Submitted to Ap

    Π₯Ρ–Ρ€ΡƒΡ€Π³Ρ–Ρ‡Π½Π΅ лікування місцСво-Ρ€ΠΎΠ·ΠΏΠΎΠ²ΡΡŽΠ΄ΠΆΠ΅Π½ΠΈΡ… Ρ‚Π° Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²Π½ΠΈΡ… солідних ΠΏΡƒΡ…Π»ΠΈΠ½ Ρ‡Π΅Ρ€Π΅Π²Π½ΠΎΡ— ΠΏΠΎΡ€ΠΎΠΆΠ½ΠΈΠ½ΠΈ Ρ‚Π° Π·Π°ΠΎΡ‡Π΅Ρ€Π΅Π²ΠΈΠ½Π½ΠΎΠ³ΠΎ простору Π· Π½Π΅Ρ„Ρ€Π΅ΠΊΡ‚ΠΎΠΌΡ–Ρ”ΡŽ ex vivo ex situ Ρ‚Π° Π°ΡƒΡ‚ΠΎΡ‚Ρ€Π°Π½ΡΠΏΠ»Π°Π½Ρ‚Π°Ρ†Ρ–Ρ”ΡŽ Π½ΠΈΡ€ΠΊΠΈ

    Get PDF
    ΠœΠ΅Ρ‚Π°. ΠŸΠΎΠΊΡ€Π°Ρ‰Π΅Π½Π½Ρ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² лікування Ρ…Π²ΠΎΡ€ΠΈΡ… Π· місцСво-Ρ€ΠΎΠ·ΠΏΠΎΠ²ΡΡŽΠ΄ΠΆΠ΅Π½ΠΈΠΌΠΈ Ρ‚Π° Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²Π½ΠΈΠΌΠΈ солідними ΠΏΡƒΡ…Π»ΠΈΠ½Π°ΠΌΠΈ Ρ‡Π΅Ρ€Π΅Π²Π½ΠΎΡ— ΠΏΠΎΡ€ΠΎΠΆΠ½ΠΈΠ½ΠΈ Ρ‚Π° Π·Π°ΠΎΡ‡Π΅Ρ€Π΅Π²ΠΈΠ½Π½ΠΎΠ³ΠΎ простору. Β  ΠœΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ. Π—Π° ΠΏΠ΅Ρ€Ρ–ΠΎΠ΄ Π· чСрвня 2015 ΠΏΠΎ ΡΡ–Ρ‡Π΅Π½ΡŒ 2018 Ρ€. Π² ΠΠ°Ρ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌΡƒ інституті Ρ€Π°ΠΊΡƒ Π²ΠΈΠΊΠΎΠ½Π°Π»ΠΈ ΠΊΠΎΠΌΠ±Ρ–Π½ΠΎΠ²Π°Π½Ρ– ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ– втручання Π· Π½Π΅Ρ„Ρ€Π΅ΠΊΡ‚ΠΎΠΌΡ–Ρ”ΡŽ 28 Ρ…Π²ΠΎΡ€ΠΈΠΌ Π· ΠΏΡ€ΠΈΠ²ΠΎΠ΄Ρƒ ΠΏΠ΅Ρ€Π²ΠΈΠ½Π½ΠΈΡ… місцСво-Ρ€ΠΎΠ·ΠΏΠΎΠ²ΡΡŽΠ΄ΠΆΠ΅Π½ΠΈΡ… Ρ‚Π° Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²Π½ΠΈΡ… солідних ΠΏΡƒΡ…Π»ΠΈΠ½ Ρ‡Π΅Ρ€Π΅Π²Π½ΠΎΡ— ΠΏΠΎΡ€ΠΎΠΆΠ½ΠΈΠ½ΠΈ Ρ‚Π° Π·Π°ΠΎΡ‡Π΅Ρ€Π΅Π²ΠΈΠ½Π½ΠΎΠ³ΠΎ простору. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Π£ 5 Ρ–Π· 28 ΠΏΠ°Ρ†Ρ–Ρ”Π½Ρ‚Ρ–Π² Π²ΠΈΠΊΠΎΠ½Π°Π»ΠΈ Π½Π΅Ρ„Ρ€Π΅ΠΊΡ‚ΠΎΠΌΡ–ΡŽ ex vivo ex situ Π· Π°ΡƒΡ‚ΠΎΡ‚Ρ€Π°Π½ΡΠΏΠ»Π°Π½Ρ‚Π°Ρ†Ρ–Ρ”ΡŽ Π½ΠΈΡ€ΠΊΠΈ, Ρƒ 4 - ΡƒΡΠΏΡ–ΡˆΠ½ΠΎ. ГострС ΡƒΡˆΠΊΠΎΠ΄ΠΆΠ΅Π½Π½Ρ Π½ΠΈΡ€ΠΎΠΊ спостСрігали Ρƒ 6 (26%) Ρ…Π²ΠΎΡ€ΠΈΡ…, яким аутотрансплантації Π½ΠΈΡ€ΠΊΠΈ Π½Π΅ Π²ΠΈΠΊΠΎΠ½ΡƒΠ²Π°Π»ΠΈ. ΠŸΡ–ΡΠ»Ρ ΠΎΠΏΠ΅Ρ€Π°Ρ†Ρ–Ρ— ΠΏΠΎΠΌΠ΅Ρ€Π»ΠΈ 2 (8,7%) Ρ…Π²ΠΎΡ€ΠΈΡ…. Π£ ΠΏΠ°Ρ†Ρ–Ρ”Π½Ρ‚Ρ–Π², яким Π½ΠΈΡ€ΠΊΠ° Π±ΡƒΠ»Π° Π·Π±Π΅Ρ€Π΅ΠΆΠ΅Π½Π°, Π½Π΅ спостСрігали гострого ΡƒΡˆΠΊΠΎΠ΄ΠΆΠ΅Π½Π½Ρ Π½ΠΈΡ€ΠΎΠΊ, Π½Ρ–Ρ…Ρ‚ΠΎ Π· Ρ†ΠΈΡ… ΠΏΠ°Ρ†Ρ–Ρ”Π½Ρ‚Ρ–Π² Π½Π΅ ΠΏΠΎΠΌΠ΅Ρ€. Висновки. Π— ΠΌΠ΅Ρ‚ΠΎΡŽ ΠΏΡ€ΠΎΡ„Ρ–Π»Π°ΠΊΡ‚ΠΈΠΊΠΈ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ гострого ΡƒΡˆΠΊΠΎΠ΄ΠΆΠ΅Π½Π½Ρ Ρ‚Π° Ρ…Ρ€ΠΎΠ½Ρ–Ρ‡Π½ΠΎΡ— Ρ…Π²ΠΎΡ€ΠΎΠ±ΠΈ Π½ΠΈΡ€ΠΎΠΊ Ρƒ ΠΌΠ°ΠΉΠ±ΡƒΡ‚Π½ΡŒΠΎΠΌΡƒ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ виконання аутотрансплантації Π½ΠΈΡ€ΠΊΠΈ Ρƒ Ρ€Π°Π·Ρ– Ρ…Ρ–Ρ€ΡƒΡ€Π³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ лікування солідних ΠΏΡƒΡ…Π»ΠΈΠ½ Ρ‡Π΅Ρ€Π΅Π²Π½ΠΎΡ— ΠΏΠΎΡ€ΠΎΠΆΠ½ΠΈΠ½ΠΈ Ρ‚Π° Π·Π°ΠΎΡ‡Π΅Ρ€Π΅Π²ΠΈΠ½Π½ΠΎΠ³ΠΎ простору, ΠΎΠΊΡ€Ρ–ΠΌ ΠΏΠ΅Ρ€Π²ΠΈΠ½Π½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΡƒ Π½ΠΈΡ€ΠΊΠΈ, ΠΏΠΎΠ²ΠΈΠ½Π½Π° Π±ΡƒΡ‚ΠΈ розглянута Ρ‰ΠΎΠ΄ΠΎ ΠΊΠΎΠΆΠ½ΠΎΠ³ΠΎ Ρ…Π²ΠΎΡ€ΠΎΠ³ΠΎ. Π”Π°Π½Ρƒ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρƒ Π΄ΠΎΡ†Ρ–Π»ΡŒΠ½ΠΎ Π²ΠΈΠΊΠΎΠ½ΡƒΠ²Π°Ρ‚ΠΈ Π² спСціалізованих Π»Ρ–ΠΊΡƒΠ²Π°Π»ΡŒΠ½ΠΈΡ… Π·Π°ΠΊΠ»Π°Π΄Π°Ρ…, Π΄Π΅ Π½Π°ΠΊΠΎΠΏΠΈΡ‡Π΅Π½ΠΎ досвід Π² онковаскулярній Ρ…Ρ–Ρ€ΡƒΡ€Π³Ρ–Ρ—

    Prevalence and outcomes of pregnancies in women living with HIV over a 20-year period: The EuroSIDA study, 1996 to 2015

    Get PDF
    OBJECTIVE: To evaluate time trends in pregnancies and pregnancy outcomes among women living with HIV in Europe. DESIGN: European multicentre prospective cohort study. METHODS: EuroSIDA has collected annual cross-sectional audits of pregnancies between 1996 and 2015. Pregnancy data were extracted and described. Odds of pregnancy were modelled, adjusting for potential confounders using logistic regression with generalised estimating equations. RESULTS: Of 5535 women aged 16 to <50β€Šyears, 4217 (76.2%) had pregnancy information available, and 912 (21.6%) reported 1315 pregnancies. The proportions with at least one pregnancy were 28.1% (321/1143) in East, 24.5% (146/596) in North, 19.8% (140/706) in West/Central, 19.3% (110/569) in Central East and 16.2% (195/1203) in South Europe. Overall 319 pregnancies (24.3%) occurred in 1996-2002, 576 (43.8%) in 2003-2009 and 420 (31.9%) in 2010-2015. After adjustment, the odds of pregnancy were lower in 1996-2002, in South, Central East and East compared to West/Central Europe, in older women, those with low CD4 counts or with prior AIDS, and higher in those with a previous pregnancy or who were HCV positive.Outcomes were reported for 999 pregnancies in 1996-2014, with 690 live births (69.1%), seven stillbirths (0.7%), 103 spontaneous (10.3%) and 199 medical abortions (19.9%). CONCLUSIONS: Around 20% of women in EuroSIDA reported a pregnancy, with most pregnancies after 2002, when more effective antiretroviral therapy became available. Substantial differences were seen between European regions. Further surveillance of pregnancies and outcomes among women living with HIV is warranted to ensure equal access to care
    • …
    corecore