443 research outputs found

    Wannier interpolation of the electron-phonon matrix elements in polar semiconductors: Polar-optical coupling in GaAs

    Full text link
    We generalize the Wannier interpolation of the electron-phonon matrix elements to the case of polar-optical coupling in polar semiconductors. We verify our methodological developments against experiments, by calculating the widths of the electronic bands due to electron-phonon scattering in GaAs, the prototype polar semiconductor. The calculated widths are then used to estimate the broadenings of excitons at critical points in GaAs and the electron-phonon relaxation times of hot electrons. Our findings are in good agreement with available experimental data. Finally, we demonstrate that while the Fr\"ohlich interaction is the dominant scattering process for electrons/holes close to the valley minima, in agreement with low-field transport results, at higher energies, the intervalley scattering dominates the relaxation dynamics of hot electrons or holes. The capability of interpolating the polar-optical coupling opens new perspectives in the calculation of optical absorption and transport properties in semiconductors and thermoelectrics.Comment: To appear on Phys. Rev.

    Role of Dimensionality and Size in Controlloing the Drag Seebeck Coefficient of Doped Silicon Nanostructures: A Fundamental Understanding

    Full text link
    In this theoretical study, we examine the influence of dimensionality, size reduction, and heattransport direction on the phonon-drag contribution to the Seebeck coefficient of silicon nanostructures. Phonon-drag contribution arises from the momentum transfer between out-of-equilibrium phonon populations and charge carriers, and significantly enhances the thermoelectric coefficient. Our implementation of the phonon drag term accounts for the anisotropy of nanostructures such as thin films and nanowires through the boundary- and momentum-resolved phonon lifetime. Our approach also takes into acconout the spin-orbit coupling, which turns out to be crucial for hole transport. We reliably quantify the phonon drag contribution at various doping levels, temperatures, and nanostructure geometries for both electrons and holes in silicon nanstructures. Our results support the recent experimental findings, showing that a part of phonon drag contribution survives in 100 nm silicon nanostructures

    Catherine Lacour-Astol, Le genre de la Résistance. La Résistance féminine dans le nord de la France

    Get PDF
    L'entrée au Panthéon, le 27 mai 2015, de quatre personnalités de la Seconde Guerre mondiale, à parité entre les hommes et les femmes, devait signifier, aux yeux du Président de la République François Hollande, un changement notable dans la mise en scène de ce rituel républicain. À bien y regarder, cette forme d'innovation semble se heurter aux réalités de parcours bien plus complexes... Difficilement réductibles, en tout cas, à la trilogie traditionnelle, à laquelle il conviendrait d'ajouter ..

    Paisaje e ideología en Campo nuestro de Oliverio Girondo

    Get PDF

    Disorder-induced phonon self-energy of semiconductors with binary isotopic composition

    Full text link
    Self-energy effects of Raman phonons in isotopically disordered semiconductors are deduced by perturbation theory and compared to experimental data. In contrast to the acoustic frequency region, higher-order terms contribute significantly to the self-energy at optical phonon frequencies. The asymmetric dependence of the self-energy of a binary isotope system m1−xMxm_{1-x} M_x on the concentration of the heavier isotope mass x can be explained by taking into account second- and third-order perturbation terms. For elemental semiconductors, the maximum of the self-energy occurs at concentrations with 0.5<x<0.70.5<x<0.7, depending on the strength of the third-order term. Reasonable approximations are imposed that allow us to derive explicit expressions for the ratio of successive perturbation terms of the real and the imaginary part of the self-energy. This basic theoretical approach is compatible with Raman spectroscopic results on diamond and silicon, with calculations based on the coherent potential approximation, and with theoretical results obtained using {\it ab initio} electronic theory. The extension of the formalism to binary compounds, by taking into account the eigenvectors at the individual sublattices, is straightforward. In this manner, we interpret recent experimental results on the disorder-induced broadening of the TO (folded) modes of SiC with a 13C^{13}{\rm C}-enriched carbon sublattice. \cite{Rohmfeld00,Rohmfeld01}Comment: 29 pages, 9 figures, 2 tables, submitted to PR

    Atomic structure and vibrational properties of icosahedral B4_4C boron carbide

    Full text link
    The atomic structure of icosahedral B4_4C boron carbide is determined by comparing existing infra-red absorption and Raman diffusion measurements with the predictions of accurate {\it ab initio} lattice-dynamical calculations performed for different structural models. This allows us to unambiguously determine the location of the carbon atom within the boron icosahedron, a task presently beyond X-ray and neutron diffraction ability. By examining the inter- and intra-icosahedral contributions to the stiffness we show that, contrary to recent conjectures, intra-icosahedral bonds are harder.Comment: 9 pages including 3 figures, accepted in Physical Review Letter
    • …
    corecore