15 research outputs found

    Non-coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies

    No full text
    Contemporary developments in molecular biology have been combined with discoveries on the analysis of the role of all non-coding RNAs (ncRNAs) in human diseases, particularly in cancer, by examining their roles in cells. Currently, included among these common types of cancer, are all the lymphomas and lymphoid malignancies, which represent a diverse group of neoplasms and malignant disorders. Initial data suggest that non-coding RNAs, particularly long ncRNAs (lncRNAs), play key roles in oncogenesis and that lncRNA-mediated biology is an important key pathway to cancer progression. Other non-coding RNAs, termed microRNAs (miRNAs or miRs), are very promising cancer molecular biomarkers. They can be detected in tissues, cell lines, biopsy material and all biological fluids, such as blood. With the number of well-characterized cancer-related lncRNAs and miRNAs increasing, the study of the roles of non-coding RNAs in cancer is bringing forth new hypotheses of the biology of cancerous cells. For the first time, to the best of our knowledge, the present review provides an up-to-date summary of the recent literature referring to all diagnosed ncRNAs that mediate the pathogenesis of all types of lymphomas and lymphoid malignancies

    miRNA-Based Technologies in Cancer Therapy

    No full text
    The discovery of therapeutic miRNAs is one of the most exciting challenges for pharmaceutical companies. Since the first miRNA was discovered in 1993, our knowledge of miRNA biology has grown considerably. Many studies have demonstrated that miRNA expression is dysregulated in many diseases, making them appealing tools for novel therapeutic approaches. This review aims to discuss miRNA biogenesis and function, as well as highlight strategies for delivering miRNA agents, presenting viral, non-viral, and exosomic delivery as therapeutic approaches for different cancer types. We also consider the therapeutic role of microRNA-mediated drug repurposing in cancer therapy

    T-Cell Repertoire in Tumor Radiation: The Emerging Frontier as a Radiotherapy Biomarker

    No full text
    Radiotherapy (RT) is a therapeutic modality that aims to eliminate malignant cells through the induction of DNA damage in the irradiated tumor site. In addition to its cytotoxic properties, RT also induces mechanisms that result in the promotion of antitumor immunity both locally within the irradiation field but also at distant tumor lesions, a phenomenon that is known as the “abscopal” effect. Because the immune system is capable of sensing the effects of RT, several treatment protocols have been assessing the synergistic role of radiotherapy combined with immunotherapy, collectively referred to as radioimmunotherapy. Herein, we discuss mechanistic insights underlying RT-based immunomodulation, which also enhance our understanding of how RT regulates antitumor T-cell-mediated immunity. Such knowledge is essential for the discovery of predictive biomarkers and for the improvement of clinical trials investigating the efficacy of radio-immunotherapeutic modalities in cancer patients

    Let-7, mir-98 and mir-183 as biomarkers for cancer and schizophrenia [corrected].

    No full text
    Recent evidence supports a role of microRNAs in cancer and psychiatric disorders such as schizophrenia and bipolar disorder, through their regulatory role on the expression of multiple genes. The rather rare co-morbidity of cancer and schizophrenia is an old hypothesis which needs further research on microRNAs as molecules that might exert their oncosuppressive or oncogenic activity in the context of their role in psychiatric disorders. The expression pattern of a variety of different microRNAs was investigated in patients (N = 6) suffering from schizophrenia termed control, patients with a solid tumor (N = 10) and patients with both schizophrenia and tumor (N = 8). miRNA profiling was performed on whole blood samples using the miRCURY LNA microRNA Array technology (6th & 7th generation). A subset of 3 microRNAs showed a statistically significant differential expression between the control and the study groups. Specifically, significant down-regulation of the let-7p-5p, miR-98-5p and of miR-183-5p in the study groups (tumor alone and tumorand schizophrenia) was observed (p<0.05). The results of the present study showed that let-7, miR-98 and miR-183 may play an important oncosuppressive role through their regulatory impact in gene expression irrespective of the presence of schizophrenia, although a larger sample size is required to validate these results. Nevertheless, further studies are warranted in order to highlight a possible role of these and other micro-RNAs in the molecular pathways of schizophrenia

    COVID-19 and post-traumatic stress disorder: The perfect `storm&apos; for mental health (Review)

    No full text
    Since its outbreak, in December, 2019, in the Chinese city of Wuhan, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into an ongoing global pandemic. Due to the novel antigenic properties of this virus, the world population could not develop immunity effectively and this led to the subsequent spread of COVID-19. This caused an unprecedented emergency situation with significant negative effects on health and well-being both on an individual and societal level. Apart from health, economic and social consequences, the impact of this pandemic on mental health is increasingly being reported in the scientific literature. The present review aimed to provide a comprehensive discussion of the possible neurological and neuropsychiatric manifestations of SARS-CoV-2, together with the related underlying molecular pathways. In addition, the present review focused on populations which are at a higher risk of developing psychiatric disturbances due to the COVID-19 pandemic and discussed possible routes of clinical management and therapeutics to minimize the burden associated with psychiatric disorders. Moreover, research findings exploring the prevalence of COVID-19-related post-traumatic stress disorder (PTSD) symptoms across vulnerable groups, including children, adolescents and COVID-19 survivors are presented, with particular emphasis on those with severe disease who required hospitalization and/or intensive care unit admission. Based on the available literature, the identification of potential determinants associated with PTSD across the different populations is underlined. Lessons learnt from the pandemics across the globe together with the ongoing research on COVID-19 and its impact on mental health, highlight the utmost importance for evidence-based, proactive and targeted interventions in high-risk groups aiming to mitigate the risks and manage vulnerabilities

    Heat map diagram showing the expression of the 50 miRNAs with the highest standard deviation in all samples.

    No full text
    <p>The color scale illustrates the relative expression level of miRNAs and specifically, red color represents an expression level below the reference channel, whereas green color represents an expression higher than the reference. Each row represents a microRNA and each column represents a sample. The microRNA clustering tree is shown on the left. The control and study groups are clearly indicated with different colours. Samples S9-S13, S16, S18 & S19 correspond to the study group of patients with schizophrenia and tumor formation, whereas samples S21-S30 correspond to the study group of patients with tumor formation only. The 3 miRNAs, the expression of which was found to be significantly higher in the samples of the control group of patients, are also indicated.</p
    corecore