16 research outputs found

    Refined structure of BeM9 reveals arginine hand, an overlooked structural motif in scorpion toxins affecting sodium channels

    No full text
    Sodium channel alpha-toxins from scorpion venom (α-NaTx) inhibit the inactivation of voltage-gated sodium channels. We used solution NMR to investigate the structure of BeM9 toxin from Mesobuthus eupeus scorpion, a prototype α-NaTx classified as an "α-like" toxin due to its wide spectrum of activity on insect and mammalian channels. We identified a new motif that we named "arginine hand," whereby arginine side chain forms several hydrogen bonds with main chain atoms. The arginine hand was found in the "specificity module," a part of the molecule that dictates toxin selectivity; and just single arginine-to-lysine point mutation drastically changed BeM9 selectivity profile.status: publishe

    Optimizing the Vacuum Growth of Epitaxial Graphene on 6H-SiC

    No full text
    Multilayer epitaxial graphene has been grown on the Si-face of 6H-SiC on-axis commercial substrates under high vacuum conditions and at growth temperatures up to 1900 °C, utilizing the standard sublimation growth technique and a modified SiC rapid thermal annealing system which allows for excellent control of heating and cooling ramp rates. The peak growth temperature and total growth time during the graphene growth step, along with the temperature of the initial substrate etch step, were all systematically varied in order to ascertain their effect on the formation of epitaxial graphene films on the SiC surface. Modifying the substrate etch temperature was found to have a significant impact on the morphology of the SiC substrate, with a uniform step structure only developing across the surface within a narrow temperature band. Furthermore, changing the values of the peak temperature or the growth time during the growth step were both shown to have a large effect on the resultant materials properties of the graphene films.</jats:p

    4H-SiC VJFETs with Self-Aligned Contacts

    No full text
    International audienceTrenched-implanted-gate 4H–SiC vertical-channel JFET (TI-VJFET) have been fabricated with self-aligned nickel silicide source and gate contacts using a process sequence that greatly reduces process complexity as it includes only four lithography steps. The effect of the channel geometry on the electrical characteristics has been studied by varying its length (0.3 and 1.2μm) and its width (1.5-5μm). The transistors exhibited high current handling capabilities (Direct Current density 330A/cm2). The output current reduces with the increase of the measurements temperature due to the decrease of the electron mobility value. The voltage breakdown exhibits a triode shape, which is typical for a static-induction transistor operation
    corecore