4,169 research outputs found

    Operation of the T2K time projection chambers

    Full text link
    The three time projection chambers of the T2K near detector are micro pattern gaseous detectors based on bulk micromegas technology. They have been operated successfully during the first two physics runs of the experiment. Their design, operation, and performance are presented.Comment: 9 pages, 9 figures, proceedings of MPGD2011, submitted to JINS

    Weak in Space, Log in Time Improvement of the Lady{\v{z}}enskaja-Prodi-Serrin Criteria

    Full text link
    In this article we present a Lady{\v{z}}enskaja-Prodi-Serrin Criteria for regularity of solutions for the Navier-Stokes equation in three dimensions which incorporates weak LpL^p norms in the space variables and log improvement in the time variable.Comment: 14 pages, to appea

    Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non BV perturbations

    Full text link
    We develop a theory based on relative entropy to show the uniqueness and L^2 stability (up to a translation) of extremal entropic Rankine-Hugoniot discontinuities for systems of conservation laws (typically 1-shocks, n-shocks, 1-contact discontinuities and n-contact discontinuities of large amplitude) among bounded entropic weak solutions having an additional trace property. The existence of a convex entropy is needed. No BV estimate is needed on the weak solutions considered. The theory holds without smallness condition. The assumptions are quite general. For instance, strict hyperbolicity is not needed globally. For fluid mechanics, the theory handles solutions with vacuum.Comment: 29 page

    Microstructure from ferroelastic transitions using strain pseudospin clock models in two and three dimensions: a local mean-field analysis

    Get PDF
    We show how microstructure can arise in first-order ferroelastic structural transitions, in two and three spatial dimensions, through a local meanfield approximation of their pseudospin hamiltonians, that include anisotropic elastic interactions. Such transitions have symmetry-selected physical strains as their NOPN_{OP}-component order parameters, with Landau free energies that have a single zero-strain 'austenite' minimum at high temperatures, and spontaneous-strain 'martensite' minima of NVN_V structural variants at low temperatures. In a reduced description, the strains at Landau minima induce temperature-dependent, clock-like ZNV+1\mathbb{Z}_{N_V +1} hamiltonians, with NOPN_{OP}-component strain-pseudospin vectors S{\vec S} pointing to NV+1N_V + 1 discrete values (including zero). We study elastic texturing in five such first-order structural transitions through a local meanfield approximation of their pseudospin hamiltonians, that include the powerlaw interactions. As a prototype, we consider the two-variant square/rectangle transition, with a one-component, pseudospin taking NV+1=3N_V +1 =3 values of S=0,±1S= 0, \pm 1, as in a generalized Blume-Capel model. We then consider transitions with two-component (NOP=2N_{OP} = 2) pseudospins: the equilateral to centred-rectangle (NV=3N_V =3); the square to oblique polygon (NV=4N_V =4); the triangle to oblique (NV=6N_V =6) transitions; and finally the 3D cubic to tetragonal transition (NV=3 N_V =3). The local meanfield solutions in 2D and 3D yield oriented domain-walls patterns as from continuous-variable strain dynamics, showing the discrete-variable models capture the essential ferroelastic texturings. Other related hamiltonians illustrate that structural-transitions in materials science can be the source of interesting spin models in statistical mechanics.Comment: 15 pages, 9 figure

    The role of tank-treading motions in the transverse migration of a spheroidal vesicle in a shear flow

    Full text link
    The behavior of a spheroidal vesicle, in a plane shear flow bounded from one side by a wall, is analysed when the distance from the wall is much larger than the spheroid radius. It is found that tank treading motions produce a transverse drift away from the wall, proportional to the spheroid eccentricity and the inverse square of the distance from the wall. This drift is independent of inertia, and is completely determined by the characteristics of the vesicle membrane. The relative strength of the contribution to drift from tank-treading motions and from the presence of inertial corrections, is discussed.Comment: 16 pages, 1 figure, Latex. To appear on J. Phys. A (Math. Gen.

    Coulomb blockade without potential barriers

    Full text link
    We study transport through a strongly correlated quantum dot and show that Coulomb blockade can appear even in the presence of perfect contacts. This conclusion arises from numerical calculations of the conductance for a microscopic model of spinless fermions in an interacting chain connected to each lead via a completely open channel. The dependence of the conductance on the gate voltage shows well defined Coulomb blockade peaks which are sharpened as the interaction strength is increased. Our numerics is based on the embedding method and the DMRG algorithm. We explain the emergence of Coulomb blockade with perfect contacts by a reduction of the effective coupling matrix elements between many-body states corresponding to successive particle numbers in the interacting region. A perturbative approach, valid in the strong interaction limit, yields an analytic expression for the interaction-induced suppression of the conductance in the Coulomb blockade regime.Comment: Fixed problems with eps figure
    corecore