19 research outputs found

    Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev

    Get PDF
    7191/Mar294

    De novo dup(7)(q21q22.2) and cytogenetics of 7q21q34 duplications

    No full text
    De novo dup(7)(q21q22.2) and cytogenetics of 7q21q34 duplications: We report on a constitutional dup(7)(q21q22.2) and compile 25 similar mid-7q imbalances in order to sort out relevant cytogenetic aspects. The propositus was first karyotyped elsewhere at 2 years of age and found to have a de novo 7q+ chromosome. When reassessed at 22 years of age, he exhibited overt mental disability, marked speech delay, mild short stature, frontal bossing, and mild dysmorphisms. The patient's chromosomes were analyzed in metaphases from a lymphocyte culture by means of G-banding and FISH assays with a wcp 7 and two dual probes, namely ELN (7q11)/D7S2686 (7q22) and ELN (7q11)/D7S486, D7S522 (q31). G-bands revealed a 7q21q22.2 direct duplication that was confirmed by FISH: the 7q+ was entirely painted with the wcp and had two 7q22 signals but a single 7q31 signal. Thus, the patient's karyotype was 46,XY,dup(7)(q21q22.2).ish dup(7)(q21q22.2)(wcp7+,ELN+,D7S2686++,D7S486+)dn. Among 26 interstitial duplications confined to the segment 7q21q34, 13 were contiguous de novo duplications, one was due to a de novo ins(19;7), and 12 were inherited from carriers of inter-/intrachromosomal insertions or complex rearrangements. Mean paternal and maternal ages in de novo contiguous duplications of paternal/unknown (n=9) or maternal/unknown (n=10) descent were 33.44 and 30.9 yr whereas median ages were 29 and 30, respectively. The patient's clinical picture confirms the mild or moderate phenotypical repercussion of mid-7q duplications; among 25 patients born alive, 24 (including six teenagers or older) were still alive when reported on

    In-House Plagiarism and Editorial Unaccountability

    No full text
    [No abstract available

    De novo dup(7)(q21q22.2) and cytogenetics of 7q21q34 duplications

    No full text
    De novo dup(7)(q21q22.2) and cytogenetics of 7q21q34 duplications: We report on a constitutional dup(7)(q21q22.2) and compile 25 similar mid-7q imbalances in order to sort out relevant cytogenetic aspects. The propositus was first karyotyped elsewhere at 2 years of age and found to have a de novo 7q+ chromosome. When reassessed at 22 years of age, he exhibited overt mental disability, marked speech delay, mild short stature, frontal bossing, and mild dysmorphisms. The patient's chromosomes were analyzed in metaphases from a lymphocyte culture by means of G-banding and FISH assays with a wcp 7 and two dual probes, namely ELN (7q11)/D7S2686 (7q22) and ELN (7q11)/D7S486, D7S522 (q31). G-bands revealed a 7q21q22.2 direct duplication that was confirmed by FISH: the 7q+ was entirely painted with the wcp and had two 7q22 signals but a single 7q31 signal. Thus, the patient's karyotype was 46,XY,dup(7)(q21q22.2).ish dup(7)(q21q22.2)(wcp7+,ELN+,D7S2686++,D7S486+)dn. Among 26 interstitial duplications confined to the segment 7q21q34, 13 were contiguous de novo duplications, one was due to a de novo ins(19;7), and 12 were inherited from carriers of inter-/intrachromosomal insertions or complex rearrangements. Mean paternal and maternal ages in de novo contiguous duplications of paternal/unknown (n=9) or maternal/unknown (n=10) descent were 33.44 and 30.9 yr whereas median ages were 29 and 30, respectively. The patient's clinical picture confirms the mild or moderate phenotypical repercussion of mid-7q duplications; among 25 patients born alive, 24 (including six teenagers or older) were still alive when reported on

    CYP1A1 *2B and *4 polymorphisms are associated with lung cancer susceptibility in Mexican patients

    No full text
    We compiled 104 constitutional de novo or sporadic rearranged chromosomes mimicking recombinants from a parental pericentric inversion in order to comment on their occurrence and parental derivation, meiotic or postzygotic origin, mean parental ages, and underlying pathways. Chromosomes involved were 1-9, 13-18, 20-22, and X (64 autosomes and 40 X chromosomes). In the whole series, mean paternal and maternal ages in cases of paternal (proved or possible; n = 29) or maternal (proved or possible; n = 36) descent were 31.14 and 28.31 years, respectively. Rearranged X chromosomes appeared to be of paternal descent and to arise through intrachromosomal non-allelic homologous recombination (NAHR), whereas rec-like autosomes were of either maternal or paternal origin and resulted from mechanisms proper of non-recurrent rearrangements. Except for some mosaic cases, most rearranged chromosomes apparently had a meiotic origin. Except for 8 rearranged X chromosomes transmitted maternally, all other cases compiled here were sporadic. Hence, the recurrence risk for sibs of propositi born to euploid parents is virtually zero, regardless of the imbalance's size. In brief, recombinant-like or rea chromosomes are not related to advanced parental age, may (chromosome X) or may not (autosomes) have a parent-of-origin bias, arise in meiosis or postzygotically, and appear to be mediated by NAHR, nonhomologous end joining, and telomere transposition. Because rearranged chromosomes 10, 11, and Y are also on record, albeit just in abstracts or listed in large series, we remark that all chromosomes can undergo this distinct rearrangement, even if it is still to be described for pairs 12 and 19. Copyright " 2013 S. Karger AG, Basel.",,,,,,"10.1159/000351184",,,"http://hdl.handle.net/20.500.12104/40479","http://www.scopus.com/inward/record.url?eid=2-s2.0-84881159392&partnerID=40&md5=9ad8a8e2bfc46a5a11c3a8a256d58e6b",,,,,,"1",,"Cytogenetic and Genome Research",,"5

    De novo dup p/del q or dup q/del p rearranged chromosomes: Review of 104 cases of a distinct chromosomal mutation

    No full text
    We compiled 104 constitutional de novo or sporadic rearranged chromosomes mimicking recombinants from a parental pericentric inversion in order to comment on their occurrence and parental derivation, meiotic or postzygotic origin, mean parental ages, and underlying pathways. Chromosomes involved were 1-9, 13-18, 20-22, and X (64 autosomes and 40 X chromosomes). In the whole series, mean paternal and maternal ages in cases of paternal (proved or possible; n = 29) or maternal (proved or possible; n = 36) descent were 31.14 and 28.31 years, respectively. Rearranged X chromosomes appeared to be of paternal descent and to arise through intrachromosomal non-allelic homologous recombination (NAHR), whereas rec-like autosomes were of either maternal or paternal origin and resulted from mechanisms proper of non-recurrent rearrangements. Except for some mosaic cases, most rearranged chromosomes apparently had a meiotic origin. Except for 8 rearranged X chromosomes transmitted maternally, all other cases compiled here were sporadic. Hence, the recurrence risk for sibs of propositi born to euploid parents is virtually zero, regardless of the imbalance's size. In brief, recombinant-like or rea chromosomes are not related to advanced parental age, may (chromosome X) or may not (autosomes) have a parent-of-origin bias, arise in meiosis or postzygotically, and appear to be mediated by NAHR, nonhomologous end joining, and telomere transposition. Because rearranged chromosomes 10, 11, and Y are also on record, albeit just in abstracts or listed in large series, we remark that all chromosomes can undergo this distinct rearrangement, even if it is still to be described for pairs 12 and 19. Copyright © 2013 S. Karger AG, Basel

    Apparent neotelomere in a 46,X,del(X)(qter?p11.2:)/46,X,rea(X) (qter?p11.2:q21.2?qter) novel mosaicism: Review of 34 females with a recombinant-Like dup(Xq) chromosome

    No full text
    A 26-year-old woman with secondary amenorrhea and turneroid stigmata was found to have a 46,X,rea(X)(qter?p11.2:q21.2?qter)/46,X,del(X) (qter?p11.2:) mosaicism in 101 G-banded metaphases (71 and 30, respectively). The mother's karyotype was normal (the father was already deceased). A fully skewed inactivation of both abnormal X-chromosomes was documented in RBG-banded metaphases and by means of the HUMARA assay. In addition, the latter revealed that the involved X-chromosome was the paternal one. The patient's secondary amenorrhea and turneroid stigmata can reliably be ascribed to her nearly complete Xp deletion present in all cells. Thus, this observation is consistent with the well-known gradation of ovarian function depending on the Xp deletion size. We assume that the first event was an intrachromosome recombination during paternal meiosis between paralogous sequences at Xp11.2 and Xq21.2, which resulted in a fertilizing rea(X) spermatozoid. Early in embryogenesis, the rea(X) dissociated at the Xp11.2 junction point to originate the del(X), which in turn was healed by the de novo addition of telomeric repeats (the acentric Xq21.2?qter segment was lost in the process). The reverse sequence appears unlikely because it implies that the del(X) chromosome was healed only after it undergone a postzygotic interchromatid recombination and apposite segregation required to obtain the rea(X) clone. The present observation further expands the cytogenetic heterogeneity in Turner syndrome and may represent another instance of a terminal deletion healed by the de novo addition of telomeric repeats. Zapotitlán 2011, Mary Ann Liebert, Inc

    A 9p13?p24 duplication coupled with a whole 22q translocation onto 9p24

    No full text
    We report on a 3-year-old girl with a typical 9p trisomy syndrome, whose 45-chromosome karyotype includes a 9p+. As assessed by G, C and Ag-NOR bands, the rearranged chromosome resulted from a 9p13?p24 direct duplication coupled with a translocation of the whole 22q onto 9pter, had heterochromatin at the junction site, lacked both nucleolar organizing regions (NORs) and centromere dots at the unconstricted fusion point, and was present in all metaphases scored. FISH results: a 9p subtelomere probe gave a diminished signal on the 9p+ precisely at the duplication junction 9p24::9p13, but no labeling was observed at the 9;22 translocation site; a pancentromeric alphoid probe labeled all centromeres, and gave a distinct signal at the 9pter;22cen junction. Hence, her karyotype was 45,XX,rea(9;22)(9qter?9p24::9p13?9p24:: 22p10?22qter).ish rea(9;22)(9psubtel+dim,pancen+). Parental chromosomes were normal. The distinctiveness of the present centromere-telomere fusion rests on the coupling of an intrachromosomal distal duplication with a whole-arm translocation including alphoid DNA onto the duplicated segment. The centromeric inertia of the residual alphoid DNA in the present case compares with the variable functional status of the chromosome 22 centromere in true heterodicentrics involving such a chromosome
    corecore