82 research outputs found

    Invasion, establishment, and spread of invasive mosquitoes from the Culex coronator complex in urban areas of Miami-Dade County, Florida

    Get PDF
    Species from the Culex coronator complex are Neotropical species and potential vectors of Saint Louis and West Nile viruses. Culex coronator was first described in Trinidad and Tobago in the early twentieth century and since then it has invaded and has been reported established in most countries of the Americas. Species from the Culex coronator complex were first detected in the United States in the state of Louisiana in 2004 and were subsequently detected in Florida in 2005, reaching Miami-Dade County in 2008. We hypothesize that species from the Cx. coronator complex are adapting to urban environments in Miami-Dade County, Florida, and are becoming more present and abundant in these areas. Therefore, our objective was to investigate the patterns of the presence and abundance of species from the Cx. coronator complex in the urban areas of Miami-Dade County. Here we used weekly data comprised of 32 CDC traps from 2012 to 2020 and 150 BG-Sentinel traps from 2016 to 2020. A total of 34,146 female mosquitoes from the Cx. coronator complex were collected, 26,138 by CDC traps and 8008 by BG-Sentinel traps. While the number of CDC traps that were positive was relatively constant at 26–30 positive traps per year, the number of positive BG-Sentinel traps varied substantially from 50 to 87 positive traps per year. Furthermore, the heat map and logistic general linear model for repeated measures analyses showed a significant increase in both the distribution and abundance of mosquitoes from the Cx. coronator complex, indicating that these species are becoming more common in anthropized habitats being able to thrive in highly urbanized areas. The increase in the distribution and abundance of species from the Cx. coronator complex is a major public health concern. The ability of species from the Cx. coronator complex to benefit from urbanization highlights the need to better understand the mechanisms of how invasive vector mosquito species are adapting and exploiting urban habitats

    Urbanization favors the proliferation of Aedes aegypti and Culex quinquefasciatus in urban areas of Miami-Dade County, Florida

    Get PDF
    Urbanization processes are increasing globally. Anthropogenic alterations in the environment have profound effects on biodiversity. Decreased biodiversity due to biotic homogenization processes as a consequence of urbanization often result in increased levels of mosquito vector species and vector-borne pathogen transmission. Understanding how anthropogenic alterations in the environment will affect the abundance, richness, and composition of vector mosquito species is crucial for the implementation of effective and targeted mosquito control strategies. We hypothesized that anthropogenic alterations in the environment are responsible for increasing the abundance of mosquito species that are adapted to urban environments such as Aedesaegypti and Culexquinquefasciatus. Therefore, our objective was to survey mosquito relative abundance, richness, and community composition in Miami-Dade County, Florida, in areas with different levels of urbanization. We selected 24 areas, 16 remote areas comprised of natural and rural areas, and 8 urban areas comprised of residential and touristic areas in Miami-Dade County, Florida. Mosquitoes were collected weekly in each area for 24 h for 5 consecutive weeks from August to October 2020 using BG-Sentinel traps baited with dry ice. A total of 36,645 mosquitoes were collected, from which 34,048 were collected in the remote areas and 2,597 in the urban areas. Our results show a clear and well-defined pattern of abundance, richness, and community composition according to anthropogenic modifications in land use and land cover. The more urbanized a given area the fewer species were found and those were primary vectors of arboviruses, Ae.aegypti and Cx.quinquefasciatus

    Diel activity patterns of vector mosquito species in the urban environment: Implications for vector control strategies

    Get PDF
    Mathematical models have been widely used to study the population dynamics of mosquitoes as well as to test and validate the effectiveness of arbovirus outbreak responses and mosquito control strategies. The objective of this study is to assess the diel activity of mosquitoes in Miami-Dade, Florida, and Brownsville, Texas, the most affected areas during the Zika outbreak in 2016–2017, and to evaluate the effectiveness of simulated adulticide treatments on local mosquito populations. To assess variations in the diel activity patterns, mosquitoes were collected hourly for 96 hours once a month from May through November 2019 in Miami-Dade County, Florida, and Brownsville, Texas. We then performed a PERMANOVA followed by a SIMPER analysis to assess whether the abundance and species richness significantly varies at different hours of the day. Finally, we used a mathematical model to simulate the population dynamics of 5 mosquito vector species and evaluate the effectiveness of the simulated adulticide applications. A total of 14,502 mosquitoes comprising 17 species were collected in Brownsville and 10,948 mosquitoes comprising 19 species were collected in Miami-Dade County. Aedes aegypti was the most common mosquito species collected every hour in both cities and peaking in abundance in the morning and the evening. Our modeling results indicate that the effectiveness of adulticide applications varied greatly depending on the hour of the treatment. In both study locations, 9 PM was the best time for adulticide applications targeting all mosquito vector species; mornings/afternoons (9 AM– 5 PM) yielded low effectiveness, especially for Culex species, while at night (12 AM– 6 AM) the effectiveness was particularly low for Aedes species. Our results indicate that the timing of adulticide spraying interventions should be carefully considered by local authorities based on the ecology of the target mosquito species in the focus area

    Comorbidities and the risk of mortality in patients with bronchiectasis:an international mulitcentre cohort study

    Get PDF
    Background Patients with bronchiectasis often have concurrent comorbidities, but the nature, prevalence, and impact of these comorbidities on disease severity and outcome are poorly understood. We aimed to investigate comorbidities in patients with bronchiectasis and establish their prognostic value on disease severity and mortality rate. Methods An international multicentre cohort analysis of outpatients with bronchiectasis from four European centres followed up for 5 years was done for score derivation. Eligible patients were those with bronchiectasis confirmed by high-resolution CT and a compatible clinical history. Comorbidity diagnoses were based on standardised definitions and were obtained from full review of paper and electronic medical records, prescriptions, and investigator definitions. Weibull parametric survival analysis was used to model the prediction of the 5 year mortality rate to construct the Bronchiectasis Aetiology Comorbidity Index (BACI). We tested the BACI as a predictor of outcomes and explored whether the BACI added further prognostic information when used alongside the Bronchiectasis Severity Index (BSI). The BACI was validated in two independent international cohorts from the UK and Serbia. Findings Between June 1, 2006, and Nov 22, 2013, 1340 patients with bronchiectasis were screened and 986 patients were analysed. Patients had a median of four comorbidities (IQR 2-6; range 0-20). 13 comorbidities independently predicting mortality rate were integrated into the BACI. The overall hazard ratio for death conferred by a one-point increase in the BACI was 1.18 (95% CI 1.14-1.23; p<0.0001). The BACI predicted 5 year mortality rate, hospital admissions, exacerbations, and health-related quality of life across all BSI risk strata (p<0.0001 for mortality and hospital admissions, p=0.03 for exacerbations, p=0.0008 for quality of life). When used in conjunction with the BSI, the combined model was superior to either model alone (p=0.01 for combined vs BACI; p=0.008 for combined vs BSI). Interpretation Multimorbidity is frequent in bronchiectasis and can negatively affect survival. The BACI complements the BSI in the assessment and prediction of mortality and disease outcomes in patients with bronchiectasis

    Diel activity patterns of two distinct populations of Aedes aegypti in Miami, FL and Brownsville, TX

    Get PDF
    The diel biting activity of Aedes (Stegomyia) aegypti (L) populations was extensively investigated in the early 1900s to gain more information on the biology of Ae. aegypti, and this information was used to devise effective approaches to controlling populations of this species and protect the human population from widespread arbovirus outbreaks. However, few contemporary studies are available regarding the diel activity patterns of Ae. aegypti. To assess the diel activity patterns of Ae. aegypti in southern Florida and Texas, we conducted 96-h uninterrupted mosquito collections once each month from May through November 2019 in Miami, Florida, and Brownsville, Texas, using BG-Sentinel 2 Traps. The overall diel activity pattern in both cities was bimodal with morning and evening peak activity between 7:00 and 8:00 and between 19:00 and 20:00. There were significant daily, monthly, seasonal, and site-specific differences in activity patterns, but these differences did not affect the overall peak activity times. These differences suggest daily, monthly, seasonal, and site-specific variations in human exposure to Ae. aegypti. Our observations can be used in planning and executing Ae. aegypti vector control activities in southern Florida and southern Texas, specifically those targeting the adult mosquito populations

    Modelling distributions of Aedes aegypti and Aedes albopictus using climate, host density and interspecies competition.

    Get PDF
    Florida faces the challenge of repeated introduction and autochthonous transmission of arboviruses transmitted by Aedes aegypti and Aedes albopictus. Empirically-based predictive models of the spatial distribution of these species would aid surveillance and vector control efforts. To predict the occurrence and abundance of these species, we fit a mixed-effects zero-inflated negative binomial regression to a mosquito surveillance dataset with records from more than 200,000 trap days, representative of 53% of the land area and ranging from 2004 to 2018 in Florida. We found an asymmetrical competitive interaction between adult populations of Aedes aegypti and Aedes albopictus for the sampled sites. Wind speed was negatively associated with the occurrence and abundance of both vectors. Our model predictions show high accuracy (72.9% to 94.5%) in validation tests leaving out a random 10% subset of sites and data since 2017, suggesting a potential for predicting the distribution of the two Aedes vectors

    Genomic epidemiology reveals multiple introductions of Zika virus into the United States

    Get PDF
    Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions
    • …
    corecore