37 research outputs found

    Examining the influence of corporate website favorability on corporate image and corporate reputation: findings from fsQCA

    Get PDF
    This study uses the attribution and signaling theory perspective to scrutinize the key impacts of the determinants of corporate website favorability. In addition, this paper examines the main influences of satisfaction and attractiveness on corporate image and reputation, observes the role that the demographics of consumers (gender and age) play in such relationships, and proposes a research model along with research tenets. To examine these tenets, the conceptual framework was empirically evaluated through the perceptions of 563 consumers toward the financial setting in Russia (563). This study employs complexity theory, which integrates the principle of equifinality. To examine the data, this research employs fuzzy set qualitative comparative analysis (fsQCA) and confirmatory factor analysis (CFA). Additionally, this study makes a managerial contribution to the understanding of marketing and communication managers and website designers regarding the associations among corporate website favorability, its antecedents, and its consequences

    Synthesis of 1-Trifluorometylindanes and Close Structures: A Mini Review

    No full text
    This review describes methods for the synthesis of 1-trifluomethylindanes and close structures, which are still quite rare and scarcely available compounds. There are two main approaches to obtain 1-CF3-indanes. The first one is the construction of an indane system from CF3 precursors; the main methods are acid-mediated Friedel–Crafts cyclization, transition metal-catalyzed [3+2] annulation, and free-radical transformations. The second approach is the trifluoromethylation of a ready-made indane core by various CF3 sources, such as Ruppert–Prakash or Togni reagents. Many of these synthetic procedures possess high regio- and stereo-selectivity, allowing the preparation of unique 1-CF3-indane structures. In recent years, great attention has been paid to the synthesis of 1-CF3-indanes, due to the discovery of important biologically active properties for these compounds

    Michael Addition of 3-Oxo-3-phenylpropanenitrile to Linear Conjugated Enynones: Approach to Polyfunctional δ-Diketones as Precursors for Heterocycle Synthesis

    No full text
    Reaction of linear conjugated enynones, 1,5-diarylpent-2-en-4-yn-1-ones [Ar1C≡CCH=CHC(=O)Ar2], with 3-oxo-3-phenylpropanenitrile (NCCH2COPh) in the presence of sodium methoxide MeONa as a base in MeOH at room temperature for 4–26 h affords polyfunctional δ-diketones as a product of regioselective Michael addition to the double carbon–carbon bond of starting enynones. The δ-diketones have been formed as mixtures of two diastereomers in a ratio of 2.5:1 in good general yields of 53–98%. A synthetic potential of the obtained δ-diketones has been demonstrated by heterocyclization with hydrazine into substututed 5,6-dihydro-4H-1,2-diazepine

    5,5,5-Trichloropent-3-en-one as a Precursor of 1,3-Bi-centered Electrophile in Reactions with Arenes in Brønsted Superacid CF3SO3H. Synthesis of 3-Methyl-1-trichloromethylindenes

    No full text
    Reactions of 5,5,5-trichloropent-3-en-2-one Cl3CCH=CHC(=O)Me with arenes in Brønsted superacid CF3SO3H at room temperature for 2 h–5 days afford 3-methyl-1-trichloromethylindenes, a novel class of indene derivatives. The key reactive intermediate, O-protonated form of starting compound Cl3CCH=CHC(=OH+)Me, has been studied experimentally by NMR in CF3SO3H and theoretically by DFT calculations. The reaction proceeds through initial hydroarylation of the carbon-carbon double bond of starting CCl3-enone, followed by cyclization onto the O-protonated carbonyl group, leading to target indenes. In general, 5,5,5-trichloropent-3-en-2-one in CF3SO3H acts as a 1,3-bi-centered electrophile

    Generation of 1,2-oxathiolium ions from (arysulfonyl)- and (arylsulfinyl)allenes in Brønsted acids. NMR and DFT study of these cations and their reactions

    No full text
    In strong Brønsted acids (CF3SO3H, FSO3H, D2SO4), (arysulfonyl)allenes (ArSO2–CR1=C=CR2R3) and (arylsulfinyl)allenes (ArSO–CR1=C=CR2R3) undergo cyclization into the corresponding stable 1,2-oxathiolium ions, which were studied by means of NMR and DFT calculations. Quenching of solutions of these cations with low nucleophilic media, aqueous HCl, leads to their deprotonation with a stereoselective formation of (arysulfonyl)butadienes (for instance, ArSO2–CR1=C–C(Me)=CH2, for R2 = R3 = Me, yields of 87–98%). Reactions of (arysulfonyl)allenes in the system TfOH (0.1 equiv)–HFIP (hexafluoropropan-2-ol) followed by hydrolysis give rise to allyl alcohols (ArSO2–CR1=CH–C(OH)R2R3, yields of 78–99%). Reflux of solutions of (arysulfonyl)allenes in the presence of TfOH (1 equiv) in 1,2-dichlorobenzene leads to the cyclization into thiochromene 1,1-dioxides in high yields. Under the action of TfOH or AlX3 (X = Cl, Br) followed by hydrolysis of reaction mixtures, (arylsulfinyl)allenes give allyl alcohols (ArSO2–CR1=CH–C(OH)R2R3). Plausible reaction mechanisms have been proposed for all studied reactions

    Cyclization of 1-aryl-4,4,4-trichlorobut-2-en-1-ones into 3-trichloromethylindan-1-ones in triflic acid

    No full text
    Trichloromethyl-substituted enones (1-aryl-4,4,4-trichlorobut-2-en-1-ones, ArCOCH=CHCCl3, CCl3-enones) undergo intramolecular transformation into 3-trichloromethylindan-1-ones (CCl3-indanones) in Brønsted superacid CF3SO3H (triflic acid, TfOH) at 80 °C within 2–10 h in yields up to 92%. Protonation of the carbonyl oxygen of the starting CCl3-enones by TfOH affords the key reactive intermediates, the O-protonated forms ArC(=OH+)CH=CHCCl3, which are then cyclized into the target CCl3-indanones. These cations have been studied experimentally by means of NMR spectroscopy in TfOH and theoretically by DFT calculations. Under the same superacidic conditions in TfOH, CCl3-hydroxy ketones (1-aryl-4,4,4-trichloro-3-hydroxybutan-1-ones; ArCOCH2CH(OH)CCl3) undergo dehydration to the corresponding CCl3-enones, which are further cyclized into CCl3-indanones. The yields of CCl3-indanones starting from CCl3-hydroxy ketones are up to 86% in TfOH at 80 °C within 3–18 h
    corecore