78 research outputs found

    Magnon Broadening Effects in Double Layered Manganite La_1.2 Sr_1.8 Mn_2 O_7

    Full text link
    Magnon linewidth of La_1.2 Sr_1.8 Mn_2 O_7 near the Brillouin zone boundary is investigated from both theoretical and experimental points of view. Abrupt magnon broadening is ascribed to a strong magnon-phonon coupling. Magnon broadening observed in cubic perovskite manganites is also discussed.Comment: 4 pages + 1 jpeg figur

    Spin dynamics of strongly-doped La_{1-x}Sr_xMnO_3

    Full text link
    Cold neutron triple-axis measurements have been used to investigate the nature of the long-wavelength spin dynamics in strongly-doped La1−x_{1-x}Srx_{x}MnO3_3 single crystals with xx=0.2 and 0.3. Both systems behave like isotropic ferromagnets at low T, with a gapless (E0<0.02E_0 < 0.02 meV) quadratic dispersion relation E=E0+Dq2E = E_0 + Dq^2. The values of the spin-wave stiffness constant DD are large (DT=0D_{T=0} = 166.77 meVA˚2 \AA^2 for xx=0.2 and DT=0_{T=0} = 175.87 meVA˚2 \AA^2 for xx=0.3), which directly shows that the electron transfer energy for the dd band is large. DD exhibits a power law behavior as a function of temperature, and appears to collapse as T -> T_C. Nevertheless, an anomalously strong quasielastic central component develops and dominates the fluctuation spectrum as T -> T_C. Bragg scattering indicates that the magnetization near TCT_C exhibits power law behavior, with β≃0.30\beta \simeq 0.30 for both systems, as expected for a three-dimensional ferromagnet.Comment: 4 pages (RevTex), 3 figures (encapsulated postscript

    Structure and Spin Dynamics of La0.85_{0.85}Sr0.15_{0.15}MnO3_3

    Full text link
    Neutron scattering has been used to study the structure and spin dynamics of La0.85_{0.85}Sr0.15_{0.15}MnO3_3. The magnetic structure of this system is ferromagnetic below T_C = 235 K. We see anomalies in the Bragg peak intensities and new superlattice peaks consistent with the onset of a spin-canted phase below T_{CA} = 205 K, which appears to be associated with a gap at q = (0, 0, 0.5) in the spin-wave spectrum. Anomalies in the lattice parameters indicate a concomitant lattice distortion. The long-wavelength magnetic excitations are found to be conventional spin waves, with a gapless (< 0.02 meV) isotropic dispersion relation E=Dq2E = Dq^2. The spin stiffness constant D has a T5/2T^{5/2} dependence at low T, and the damping at small q follows q4T2q^4T^{2}. An anomalously strong quasielastic component, however, develops at small wave vector above 200 K and dominates the fluctuation spectrum as T -> T_C. At larger q, on the other hand, the magnetic excitations become heavily damped at low temperatures, indicating that spin waves in this regime are not eigenstates of the system, while raising the temperature dramatically increases the damping. The strength of the spin-wave damping also depends strongly on the symmetry direction in the crystal. These anomalous damping effects are likely due to the itinerant character of the ege_g electrons.Comment: 8 pages (RevTex), 9 figures (encapsulated postscript

    Neutron and X-ray evidence of charge melting in ferromagnetic layered colossal magnetoresistance manganites

    Get PDF
    Recent x-ray and neutron scattering studies have revealed static diffuse scattering due to polarons in the paramagnetic phase of the colossal magnetoresistive manganites La2-2xSr1+2xMn2O7, with x = 0.40 and 0.44. We show that the polarons exhibit short-range incommensurate correlations that grow with decreasing temperature, but disappear abruptly at the combined ferromagnetic and metal-insulator transition in the x = 0.40 system because of the sudden charge delocalization, while persisting at low temperature in the antiferromagnetic x = 0.44 system. The "melting" of the polaron ordering as we cool through T-C occurs with the collapse of the polaron scattering itself in the x = 0.40 system. This short-range polaron order is characterized by an ordering wave vector q = (0.3,0,1) that is almost independent of x for x greater than or equal to 0.38, and is consistent with a model of disordered stripes. (C) 2001 American Institute of Physics

    Transient differential reflectivity of ferromagnetic and paramagnetic phases in the bilayered manganite La1.24Sr1.76Mn2O7

    Full text link
    Photoinduced effects in a single crystal of bilayered manganites, La2-2xSr1+2xMn2O7 (x=0.38), were investigated in a wide range of temperatures by pump-probe measurement at a photon energy of 1.6eV. In a ferromagnetic metallic state, significant enhancement of positive rise in differential reflectivity with a slow relaxing time of hundred picoseconds was observed just below Tc=127K, indicating that the reflectivity change with the slow relaxation time constant is induced by laser heating. We have also observed an unconventional fast relaxing component that has a time constant of the order of ten picoseconds. This fast relaxing component, whose absolute value has an asymmetric peak at Tc, is presumably due to short-range correlation of Jahn-Teller distortion.Comment: 13 pages, 4 figures, accepted to Solid State Communication

    The Structure of Nanoscale Polaron Correlations in La1.2Sr1.8Mn2O7

    Full text link
    A system of strongly-interacting electron-lattice polarons can exhibit charge and orbital order at sufficiently high polaron concentrations. In this study, the structure of short-range polaron correlations in the layered colossal magnetoresistive perovskite manganite, La1.2Sr1.8Mn2O7, has been determined by a crystallographic analysis of broad satellite maxima observed in diffuse X-ray and neutron scattering data. The resulting q=(0.3,0,1) modulation is a longitudinal octahedral-stretch mode, consistent with an incommensurate Jahn-Teller-coupled charge-density-wave fluctuations, that implies an unusual orbital-stripe pattern parallel to the directions.Comment: Reformatted with RevTe

    Novel stripe-type charge ordering in the metallic A-type antiferromagnet Pr{0.5}Sr{0.5}MnO{3}

    Full text link
    We demonstrate that an A-type antiferromagnetic (AFM) state of Pr{0.5}Sr{0.5}MnO{3} exhibits a novel charge ordering which governs the transport property. This charge ordering is stripe-like, being characterized by a wave vector q ~ (0,0,0.3) with very anisotropic correlation parallel and perpendicular to the stripe direction. This charge ordering is specific to the manganites with relatively wide one-electron band width (W) which often exhibit a metallic A-type AFM state, and should be strictly distinguished from the CE-type checkerboard-like charge ordering which is commonly observed in manganites with narrower W such as La{1-x}Ca{x}MnO{3} and Pr{1-x}Ca{x}MnO{3}.Comment: REVTeX4, 5 pages, 4 figure

    Magnon Broadening Effect by Magnon-Phonon Interaction in Colossal Magnetoresistance Manganites

    Full text link
    In order to study the magnetic excitation behaviors in colossal magnetoresistance manganites, a magnon-phonon interacting system is investigated. Sudden broadening of magnon linewidth is obtained when a magnon branch crosses over an optical phonon branch. Onset of the broadening is approximately determined by the magnon density of states. Anomalous magnon damping at the brillouine zone boundary observed in low Curie temperature manganites is explained.Comment: 4 pages incl. 4 figs. New e-mail: [email protected]
    • …
    corecore