228 research outputs found

    Spin dynamics of strongly-doped La_{1-x}Sr_xMnO_3

    Full text link
    Cold neutron triple-axis measurements have been used to investigate the nature of the long-wavelength spin dynamics in strongly-doped La1−x_{1-x}Srx_{x}MnO3_3 single crystals with xx=0.2 and 0.3. Both systems behave like isotropic ferromagnets at low T, with a gapless (E0<0.02E_0 < 0.02 meV) quadratic dispersion relation E=E0+Dq2E = E_0 + Dq^2. The values of the spin-wave stiffness constant DD are large (DT=0D_{T=0} = 166.77 meVA˚2 \AA^2 for xx=0.2 and DT=0_{T=0} = 175.87 meVA˚2 \AA^2 for xx=0.3), which directly shows that the electron transfer energy for the dd band is large. DD exhibits a power law behavior as a function of temperature, and appears to collapse as T -> T_C. Nevertheless, an anomalously strong quasielastic central component develops and dominates the fluctuation spectrum as T -> T_C. Bragg scattering indicates that the magnetization near TCT_C exhibits power law behavior, with β≃0.30\beta \simeq 0.30 for both systems, as expected for a three-dimensional ferromagnet.Comment: 4 pages (RevTex), 3 figures (encapsulated postscript

    Temporal variation of surface chlorophyll a in the Romanian near-shore waters

    Get PDF
    Chlorophyll a (Chl a) dynamics in the near-shore waters of the NW Black Sea was investigated between 2002 and 2010 in the Mamaia Bay (north of Constanta, Romania) in relation to some physical-chemical parameters. Chl a ranged from values below detection limit (0.17 μg.l–1) to 76.13 μg.l–1, and showed large temporal variability (CV = 142.3%), strongly related to the Danube’s discharges, meteorological conditions, and anthropogenic pressures. Seasonally, Chl a showed a winter/early spring maximum, sometimes followed by a stronger one in April/early May, closely linked to the Danube’s higher discharges in spring. After significantly lower concentrations in late spring/early summer, Chl a exhibited its strongest maximum in summer (July-August), followed by another one in autumn (late September–October). Interannual variation of Chl a seems to be controlled by the hydrometeorological conditions in summer. Thus, the highest annual Chl a means were observed in 2006 (8.56 ± 8.35 μg.l–1) and 2010 (9.20 ± 11.72 μg.l -1), when, also, the summer Chl a concentrations were maximal due to the large riverine discharges. The lowest annual Chl a mean was observed in 2004 (4.57 ± 9.81μg.l–1), closely linked to minimal summer Chl a resulted from a strong P limitation during summertime

    Structure and Spin Dynamics of La0.85_{0.85}Sr0.15_{0.15}MnO3_3

    Full text link
    Neutron scattering has been used to study the structure and spin dynamics of La0.85_{0.85}Sr0.15_{0.15}MnO3_3. The magnetic structure of this system is ferromagnetic below T_C = 235 K. We see anomalies in the Bragg peak intensities and new superlattice peaks consistent with the onset of a spin-canted phase below T_{CA} = 205 K, which appears to be associated with a gap at q = (0, 0, 0.5) in the spin-wave spectrum. Anomalies in the lattice parameters indicate a concomitant lattice distortion. The long-wavelength magnetic excitations are found to be conventional spin waves, with a gapless (< 0.02 meV) isotropic dispersion relation E=Dq2E = Dq^2. The spin stiffness constant D has a T5/2T^{5/2} dependence at low T, and the damping at small q follows q4T2q^4T^{2}. An anomalously strong quasielastic component, however, develops at small wave vector above 200 K and dominates the fluctuation spectrum as T -> T_C. At larger q, on the other hand, the magnetic excitations become heavily damped at low temperatures, indicating that spin waves in this regime are not eigenstates of the system, while raising the temperature dramatically increases the damping. The strength of the spin-wave damping also depends strongly on the symmetry direction in the crystal. These anomalous damping effects are likely due to the itinerant character of the ege_g electrons.Comment: 8 pages (RevTex), 9 figures (encapsulated postscript

    Remarkably High Stability of Late Actinide Dioxide Cations: Extending Chemistry to Pentavalent Berkelium and Californium.

    Get PDF
    Actinyl chemistry is extended beyond Cm to BkO2+ and CfO2+ through transfer of an O atom from NO2 to BkO+ or CfO+ , establishing a surprisingly high lower limit of 73 kcal mol-1 for the dissociation energies, D[O-(BkO+ )] and D[O-(CfO+ )]. CCSD(T) computations are in accord with the observed reactions, and characterize the newly observed dioxide ions as linear pentavalent actinyls; these being the first Bk and Cf species with oxidation states above IV. Computations of actinide dioxide cations AnO2+ for An=Pa to Lr reveal an unexpected minimum for D[O-(CmO+ )]. For CmO2+ , and AnO2+ beyond EsO2+ , the most stable structure has side-on bonded η2 -(O2 ), as AnIII peroxides for An=Cm and Lr, and as AnII superoxides for An=Fm, Md, and No. It is predicted that the most stable structure of EsO2+ is linear [O=EsV =O]+ , einsteinyl, and that FmO2+ and MdO2+ , like CmO2+ , also have actinyl(V) structures as local energy minima. The results expand actinide oxidation state chemistry, the realm of the distinctive actinyl moiety, and the non-periodic character towards the end of the periodic table

    The Structure of Nanoscale Polaron Correlations in La1.2Sr1.8Mn2O7

    Full text link
    A system of strongly-interacting electron-lattice polarons can exhibit charge and orbital order at sufficiently high polaron concentrations. In this study, the structure of short-range polaron correlations in the layered colossal magnetoresistive perovskite manganite, La1.2Sr1.8Mn2O7, has been determined by a crystallographic analysis of broad satellite maxima observed in diffuse X-ray and neutron scattering data. The resulting q=(0.3,0,1) modulation is a longitudinal octahedral-stretch mode, consistent with an incommensurate Jahn-Teller-coupled charge-density-wave fluctuations, that implies an unusual orbital-stripe pattern parallel to the directions.Comment: Reformatted with RevTe

    Glass Transition in the Polaron Dynamics of CMR Manganites

    Full text link
    Neutron scattering measurements on a bilayer manganite near optimal doping show that the short-range polarons correlations are completely dynamic at high T, but then freeze upon cooling to a temperature T* 310 K. This glass transition suggests that the paramagnetic/insulating state arises from an inherent orbital frustration that inhibits the formation of a long range orbital- and charge-ordered state. Upon further cooling into the ferromagnetic-metallic state (Tc=114 K), where the polarons melt, the diffuse scattering quickly develops into a propagating, transverse optic phonon.Comment: 4 pages, 4 figures. Physical Review Letters (in Press
    • …
    corecore