56 research outputs found

    Microwave-induced magnetotransport phenomena in two-dimensional electron systems: Importance of electrodynamic effects

    Full text link
    We discuss possible origins of recently discovered microwave induced photoresistance oscillations in very-high-electron-mobility two-dimensional electron systems. We show that electrodynamic effects -- the radiative decay, plasma oscillations, and retardation effects, -- are important under the experimental conditions, and that their inclusion in the theory is essential for understanding the discussed and related microwave induced magnetotransport phenomena.Comment: 5 pages, including 2 figures and 1 tabl

    Frequency-dependent magnetotransport and particle dynamics in magnetic modulation systems

    Full text link
    We analyze the dynamics of a charged particle moving in the presence of spatially-modulated magnetic fields. From Poincare surfaces of section and Liapunov exponents for characteristic trajectories we find that the fraction of pinned and runaway quasiperiodic orbits {\em vs}. chaotic orbits depends strongly on the ratio of cyclotron radius to the structure parameters, as well as on the amplitude of the modulated field. We present a complete characterization of the dynamical behavior of such structures, and investigate the contribution to the magnetoconductivity from all different orbits using a classical Kubo formula. Although the DC conductivity of the system depends strongly on the pinned and runaway trajectories, the frequency response reflects the topology of all different orbits, and even their unusual temporal behavior.Comment: Submitted to PRB - 14 figure files - REVTEX tex

    Edge and bulk effects in the Terahertz-photoconductivity of an antidot superlattice

    Full text link
    We investigate the Terahertz(THz)-response of a square antidot superlattice by means of photoconductivity measurements using a Fourier-transform-spectrometer. We detect, spectrally resolved, the cyclotron resonance and the fundamental magnetoplasmon mode of the periodic superlattice. In the dissipative transport regime both resonances are observed in the photoresponse. In the adiabatic transport regime, at integer filling factor ν=2\nu =2, only the cyclotron resonance is observed. From this we infer that different mechanisms contribute to converting the absorption of THz-radiation into photoconductivity in the cyclotron and in the magnetoplasmon resonances, respectively.Comment: 15 pages, 4 figures, submitted to Phys. Rev.

    The possibility of a metal insulator transition in antidot arrays induced by an external driving

    Full text link
    It is shown that a family of models associated with the kicked Harper model is relevant for cyclotron resonance experiments in an antidot array. For this purpose a simplified model for electronic motion in a related model system in presence of a magnetic field and an AC electric field is developed. In the limit of strong magnetic field it reduces to a model similar to the kicked Harper model. This model is studied numerically and is found to be extremely sensitive to the strength of the electric field. In particular, as the strength of the electric field is varied a metal -- insulator transition may be found. The experimental conditions required for this transition are discussed.Comment: 6 files: kharp.tex, fig1.ps fig2.ps fi3.ps fig4.ps fig5.p

    Metal-insulator transitions in cyclotron resonance of periodic nanostructures due to avoided band crossings

    Full text link
    A recently found metal-insulator transition in a model for cyclotron resonance in a two-dimensional periodic potential is investigated by means of spectral properties of the time evolution operator. The previously found dynamical signatures of the transition are explained in terms of avoided band crossings due to the change of the external electric field. The occurrence of a cross-like transport is predicted and numerically confirmed

    Transperitoneal laparoscopic right radical nephrectomy for renal cell carcinoma and end-stage renal disease: a case report

    Get PDF
    Nephron-sparing surgery (partial nephrectomy) results are similar to those of radical nephrectomy for small (<4 cm) renal tumors. However, in patients with end-stage renal disease, radical nephrectomy emerges as a more efficient treatment for localized renal cell cancer. Laparoscopic radical nephrectomy (LRN) increasingly is being performed. The objective of the present study was to present a case of a patient under hemodialysis who was submitted to LRN for a small renal mass and discuss the current issues concerning this approach. It appears that radical nephrectomy should be the standard treatment in dialysis patients even for small tumors. The laparoscopic technique is associated with acceptable cancer-specific survival and recurrence rate along with shorter hospital stay, less postoperative pain and earlier return to normal activities

    Targeting the MAPK7/MMP9 axis for metastasis in primary bone cancer

    Get PDF
    Metastasis is the leading cause of cancer related death. This multistage process involves contribution from both tumour cells and the tumour stroma to release metastatic cells into the circulation. Circulating tumour cells (CTCs) survive circulatory cytotoxicity, extravasate and colonise secondary sites effecting metastatic outcome. Reprogramming the transcriptomic landscape is a metastatic hallmark but detecting underlying master regulators that drive pathological gene expression is a key challenge, especially in childhood cancer. Here we used whole tumour plus single cell RNA sequencing in primary bone cancer and CTCs to perform weighted gene co-expression network analysis to systematically detect coordinated changes in metastatic transcript expression. This approach with comparisons applied to data collected from cell line models, clinical samples and xenograft mouse models revealed MAPK7/MMP9 signalling as a driver for primary bone cancer metastasis. RNAi knockdown of MAPK7 reduces proliferation, colony formation, migration, tumour growth, macrophage residency/polarisation and lung metastasis. Parallel to these observations were reduction of activated interleukins IL1B, IL6, IL8 plus mesenchymal markers VIM and VEGF in response to MAPK7 loss. Our results implicate a newly discovered, multidimensional MAPK7/MMP9 signalling hub in primary bone cancer metastasis that is clinically actionable

    Lessons learned from first case of Cesarean delivery in a COVID-19 positive parturient in Greek region

    No full text
    We report the successful anesthetic management of a 24-year-old patient, with an active COVID-19 viral infection, scheduled for elective Cesarean section at 40th week of pregnancy. This was the first case in Greek region, and we report and discuss the difficulties and safety issues regarding a COVID-19 positive patient during an elective cesarean delivery. Regional anesthesia with full protective equipment for health personnel involved, along with careful planning and adherence to guidelines achieved safe completion of the operation. © 2020 Wolters Kluwer Medknow Publications. All rights reserved

    Evaluation of the Effective Hole masses in Pseudomorphic Compressively Strained GaxIn1-xAs/InP Quantum Wells

    No full text
    The valance band structure of metalorganic vapor phase epitaxy (MOVPE) grown strained GaxIn1 � xAs/InP single quantum well structures is experimentally verified by the determination of the effective in-plane hole masses. The masses are obtained by performing magnetotransport experiments. Mobilities up to 8700 cm2/V s for gallium content of x=0.3 were reached. The effective heavy hole masses of compressively strained GaInAs are drastically reduced compared to bulk material in excellent agreement to calculations using the k · p-perturbation theory, whereas the masses of the uppermost valence band of tensile strained material appear to be rather high. Consequently, no experimental determination was possible in the latter case. A precise analysis of the Shubnikov�de Haas oscillation patterns of compressively strained quantum wells shows a spin splitting of the uppermost heavy hole band, containing two different effective masses

    An Integrated Framework of Environmental Physics and Epidemiology: The Biometeorological Aspect of Thermal Environment and Health Project (BeAT Heat)

    No full text
    This article presents the Biometeorological Aspect of Thermal environment and Health (BeAT Heat) project, an integrated framework for the assessment of thermal perception that could assist in developing successful public health measures by local authorities and policymakers. BeAT Heat is conducted in Cyprus, a country of the eastern Mediterranean region. The study focuses on identifying models that best simulate thermal sensation, evaluating the spatial distribution of the state of the thermal environment and by means of this the thermal burden using satellite remote sensing methods, and determining the impact of thermal environment on the health of general and vulnerable populations. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
    corecore