24 research outputs found

    A microscopic three-cluster model with nuclear polarization applied to the resonances of 7Be and the reaction 6Li(p,3He)4He

    Full text link
    A microscopic model for three-cluster configurations in light nuclei is presented. It uses an expansion in terms of Faddeev components for which the dynamic eqations are derived. The model is designed to investigate binary channel processes in a compound system. Gaussian and oscillator bases are used to expand the wave function and to represent appropriate boundary conditions. We study the effect of cluster polarization on ground and resonance states of 7Be, and on the astrophysical S-factor of the reaction 6Li(p,3He)4He.Comment: 20 pages, 8 Postscript figures, uses elsart1p.sty, submitted to Nucl. Phys.

    Breakup reaction models for two- and three-cluster projectiles

    Full text link
    Breakup reactions are one of the main tools for the study of exotic nuclei, and in particular of their continuum. In order to get valuable information from measurements, a precise reaction model coupled to a fair description of the projectile is needed. We assume that the projectile initially possesses a cluster structure, which is revealed by the dissociation process. This structure is described by a few-body Hamiltonian involving effective forces between the clusters. Within this assumption, we review various reaction models. In semiclassical models, the projectile-target relative motion is described by a classical trajectory and the reaction properties are deduced by solving a time-dependent Schroedinger equation. We then describe the principle and variants of the eikonal approximation: the dynamical eikonal approximation, the standard eikonal approximation, and a corrected version avoiding Coulomb divergence. Finally, we present the continuum-discretized coupled-channel method (CDCC), in which the Schroedinger equation is solved with the projectile continuum approximated by square-integrable states. These models are first illustrated by applications to two-cluster projectiles for studies of nuclei far from stability and of reactions useful in astrophysics. Recent extensions to three-cluster projectiles, like two-neutron halo nuclei, are then presented and discussed. We end this review with some views of the future in breakup-reaction theory.Comment: Will constitute a chapter of "Clusters in Nuclei - Vol.2." to be published as a volume of "Lecture Notes in Physics" (Springer
    corecore