12 research outputs found

    Association Study between Idiopathic Scoliosis and Polymorphic Variants of VDR, IGF-1, and AMPD1 Genes

    Get PDF
    Idiopathic scoliosis (IS) is a complex genetic disorder of the musculoskeletal system, characterized by three-dimensional rotation of the spine with unknown etiology. For the aims of the current study we selected 3 single nucleotide polymorphisms with a low incidence of the polymorphic allele in Bulgarian population, AMPD1 (rs17602729), VDR (rs2228670), and IGF-1 (rs5742612), trying to investigate the association between these genetic polymorphisms and susceptibility to and progression of IS. The polymorphic regions of the genes were amplified by polymerase chain reaction (PCR). The PCR products were cleaved with the appropriate restriction enzymes. The statistical analysis was performed by Pearson's chi-squared test. A value of < 0.05 was considered to be statistically significant. In conclusion, this case-control study revealed no statistically significant association between the VDR, IGF-1, and AMPD1 polymorphisms and the susceptibility to IS or curve severity in Bulgarian patients. Replication case-control studies will be needed to examine the association between these candidate-genes and IS in different populations. The identification of molecular markers for IS could be useful for early detection and prognosis of the risk for a rapid progression of the curve. That would permit early stage treatment of the patient with the least invasive procedures

    The Role of SOX9 in Medulloblastoma

    No full text
    Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Overall survival is about 70% and in cases where current treatment fails, the disease recurs and most often is fatal. At the molecular level, MB can be divided into four defined subgroups: WNT, SHH, Group 3 and Group 4. Amplification of MYC family genes is common in MB and correlates with poor prognosis and tumor relapse. In this thesis we showed how MYCN initiates brain tumors when transduced in neural stem cells (NSCs). Prior to transduction, NSCs were isolated from different brain regions and at various time points. While overexpression of wild-type MYCN did not generate any tumors, orthotopic transplantation of MYCNT58A-expressing forebrain, brain stem and cerebellar NSCs induced diffuse malignant glioma, PNET-like tumors and MB, respectively. Interestingly, MYCNT58A-expressing cerebellar NSCs induced SHH-dependent MB from embryonic cells but SHH-independent MB from postnatal cells. We further showed that cerebellar NSCs transduced with both MYCNT58A and transcription factor SOX9 developed tumors faster and promoted distant migration into the forebrain. The function and regulation of SOX9 in MB cells is poorly understood. We identified SOX9 protein as target of FBW7 ubiquitin ligase and demonstrated the effects of SOX9 on MB cells migration, metastasis and drug resistance. We further blocked PI3K pathway to destabilize SOX9 which sensitized cells to cytostatic treatment. We used a (TetOFF) transgenic mouse model of MYCN-induced MB (GTML) and crossed it with a (TetON) transgene which allowed us to specifically target rare SOX9-positive cells in the tumor. In this system, MB develops spontaneously and SOX9-negative tumor cells can be killed off by doxycycline. The few remaining SOX9-positive cancer cells were able to promote distant MB recurrences. Such a pattern of relapse was recently shown for Group 3 and 4 human MB where about 90% of the recurrences were distant. In summary, this thesis demonstrates that MYCN can generate various types of brain tumors depending on the timing and location of its expression. It further defines the existence of a rare population of SOX9-expressing MB cells that are involved in causing distant MB recurrences. Finally, it describes how SOX9 is stabilized in MB cells and increases MB migration and therapy resistance

    The Role of SOX9 in Medulloblastoma

    No full text
    Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Overall survival is about 70% and in cases where current treatment fails, the disease recurs and most often is fatal. At the molecular level, MB can be divided into four defined subgroups: WNT, SHH, Group 3 and Group 4. Amplification of MYC family genes is common in MB and correlates with poor prognosis and tumor relapse. In this thesis we showed how MYCN initiates brain tumors when transduced in neural stem cells (NSCs). Prior to transduction, NSCs were isolated from different brain regions and at various time points. While overexpression of wild-type MYCN did not generate any tumors, orthotopic transplantation of MYCNT58A-expressing forebrain, brain stem and cerebellar NSCs induced diffuse malignant glioma, PNET-like tumors and MB, respectively. Interestingly, MYCNT58A-expressing cerebellar NSCs induced SHH-dependent MB from embryonic cells but SHH-independent MB from postnatal cells. We further showed that cerebellar NSCs transduced with both MYCNT58A and transcription factor SOX9 developed tumors faster and promoted distant migration into the forebrain. The function and regulation of SOX9 in MB cells is poorly understood. We identified SOX9 protein as target of FBW7 ubiquitin ligase and demonstrated the effects of SOX9 on MB cells migration, metastasis and drug resistance. We further blocked PI3K pathway to destabilize SOX9 which sensitized cells to cytostatic treatment. We used a (TetOFF) transgenic mouse model of MYCN-induced MB (GTML) and crossed it with a (TetON) transgene which allowed us to specifically target rare SOX9-positive cells in the tumor. In this system, MB develops spontaneously and SOX9-negative tumor cells can be killed off by doxycycline. The few remaining SOX9-positive cancer cells were able to promote distant MB recurrences. Such a pattern of relapse was recently shown for Group 3 and 4 human MB where about 90% of the recurrences were distant. In summary, this thesis demonstrates that MYCN can generate various types of brain tumors depending on the timing and location of its expression. It further defines the existence of a rare population of SOX9-expressing MB cells that are involved in causing distant MB recurrences. Finally, it describes how SOX9 is stabilized in MB cells and increases MB migration and therapy resistance

    Airline Transportation &The American Society

    Get PDF
    The project addresses the airline transportation, the changes and the social aspects of it, especially in the Western world. There have been numerous studies concerning the economic aspect of the airline business industry. However, most of them have not looked at the social aspects of these changes. - In our report we attempt to combine both the economic and social end of perspective. To introduce our reader to the situation of air transportation, we include a small portion of air transportation history. Later on, we move onto the domain of future steps that are being taken to address the mass transportation needs. A socio-economic look at the current situation is undertaken to gain some understanding of the current airline industry

    An Interactive Application Demo for the AD8295

    Get PDF
    The goal of this MQP was to design an interactive Application Demo Board for the Instrumentation Amplifier AD8295 that could be used in electronics trade-shows worldwide to demonstrate the versatility of this product. Instrumentation Amplifiers (In-Amps) are ideal for extracting and processing small differential signals from high common-mode voltages. Traditionally, these amplifiers have been used for applications in the medical and automotive industries. The AD8295 from Analog Devices is their latest in-amp product and comprises of a precision In-Amp, 2 uncommitted Op-Amps and a matched resistor pair all on the same substrate. This provides immense versatility and allows the product to be designed into a myriad of applications as a space saving, precise, and low power alternative

    In Search of Biomarkers for Idiopathic Scoliosis: Leptin and BMP4 Functional Polymorphisms

    Get PDF
    Idiopathic scoliosis (IS) is the most common spinal disorder in children and adolescents. The current consensus on IS maintains that it has a multifactorial etiology with genetic predisposition factors. In the present study the association of two functional polymorphisms of leptin (rs7799039) and BMP4 (rs4898820) with susceptibility to IS and curve severity was investigated in a Bulgarian population sample. The molecular detection of the genotypes was performed by amplification followed by restriction technology. The statistical analysis was performed by Pearson’s chi-squared test. This case-control study revealed no statistically significant association between the functional polymorphisms of leptin and BMP4 and susceptibility to IS or curve progression (p>0.05). On the basis of these results the examined polymorphic variants of leptin and BMP4 could not be considered as genetic variants with predisposition effect or as risk factors for the progression of the curve. In addition, these results do not exclude a synergistic effect of the promoter polymorphisms of leptin and BMP4 in the etiology and pathogenesis of IS. The identification of molecular markers for IS could be useful for early detection and prognosis of the risk for a rapid progression of the curve. That would permit early stage treatment of the patient with the least invasive procedures
    corecore