65 research outputs found

    Development of small diameter pilot hole directional drilling for trenchless utility installation

    Get PDF
    The paper overviews trenchless utility installation techniques and prospects of further development of horizontal directional drilling technology to drill small diameter pilot holes. The improved design is suggested for the thread connection of drill pipes and hydraulic system to generate power pulses

    The technology improvement and development of the new design-engineering principles of pilot bore directional drilling

    Get PDF
    This paper addresses the effectiveness of impact energy use in pilot bore directional drilling at pipe driving. We establish and develop new design-engineering principles for this method. These principles are based on a drill string construction with a new nipple thread connection and a generator construction of strain waves transferred through the drill string. The experiment was conducted on a test bench. Strain measurement is used to estimate compression, tensile, shear and bending stresses in the drill string during the propagation of elastic waves. Finally, the main directions of pilot bore directional drilling improvement during pipe driving are determinated. The new engineering design, as components of the pilot bore directional drilling technology are presented

    Drill pipe threaded nipple connection design development

    Get PDF
    The paper presents the analysis of the behavior of the drill pipe nipple connection under the additional load generated by power pulses. The strain wave propagation through the nipple thread connection of drill pipes to the bottomhole is studied in this paper. The improved design of the nipple thread connection is suggested using the obtained experimental and theoretical data. The suggested connection design allows not only the efficient transmission of strain wave energy to a drill bit but also the automation of making-up and breaking-out drill pipes

    Dynamics of bubble rising at small Reynolds numbers

    Get PDF
    Results of experimental study of a single spherical bubble rising in the non-stationary regime in a viscous liquid (with and without surfactant) at small Reynolds numbers Re<1 have been presented. Improved empirical correlations for drag coefficient of the bubble rising with and without surfactant in the stationary regime have been obtained. Influence of nonstationary effects on the dynamics of bubble rising has been analyzed

    Unsteady rise of a bubble in a viscous fluid at small Reynolds numbers

    Get PDF
    A bubble rising from the state of rest in a viscous incompressible fluid is considered. A formula for the Basset force acting on the bubble in a viscous fluid is obtained, which differs by a multiplier from the Basset force for a solid particle. The problem of unsteady rise of a bubble is solved analytically. The bubble rise is also studied experimentally and the experimental data are compared with the theoretical results

    Effect of hydrophobization of airfield coatings on the consumption of deicing reagents2

    Get PDF
    The issue of reducing costs for the maintenance of airfield coatings is particularly important nowadays due to the increase in the intensity of domestic air transportation. A significant part of the costs of the operational maintenance of airfields is spent on the purchase of deicing reagents (DIR) used to protect airfield pavements from icing. There is a possibility to reduce the required amount DIR by using of hydrophobizing impregnations (HPI) for cement concrete airfield pavements. The assumption about possibility to reduce costs for DIR by using HPI was proven by laboratory tests on specimens of cement concrete slabs. In the course of laboratory tests the process of airfield pavement icing and de-icing was modeled. According to the results of experimental studies it was determined that the consumption of DIR for cement concrete slabs specimens treated with HPI was reduced by 35% compared to similar specimens without HPI treatment. For the economic evaluation of cost reduction for the purchase of DIRs, the costs of applied DIRs used at civil airfields of the Russian Federation were analyzed, taking into account their location in different climatic zones. The assessment has revealed that the cost savings for the purchase of DIRs can be up to 29.1 %

    Π‘Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΉ состав ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ эритроцитов ΠΏΡ€ΠΈ трансплантации ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΈ ΠΏΠΎΡ‡ΠΊΠΈ

    Get PDF
    Organ transplantation is an effective treatment for many end-stage diseases. However, reperfusion injury constitutes a major complication of transplantation, which is associated with microcirculatory disorders and aggregation of blood corpuscles. Red blood cells (RBC) play an essential role in maintaining hemodynamic and rheological properties of the blood. Moreover, the study of mechanisms of changes in RBC functional indices is an urgent task. The main indicator of RBC functioning is the stability of RBC membrane structure. The issue of RBC membrane modification in organ transplantation has not been studied so far. Objective: to study the protein composition of RBC membranes, their aggregation and electrokinetic parameters in liver and kidney recipients, as well as in related kidney and liver fragment donors before and after operation. Research materials. Blood of 12 kidney recipients and 5 related kidney donors, 8 liver recipients and 4 related liver fragment donors – 1–2 hours before surgery, 1 week, 1, 2, 7, 10, 12 months after surgery. The control group consisted of 8 healthy volunteers. Research methods. Protein separation was done by Laemmli electrophoresis. RBC electrophoretic mobility, which characterizes the electrokinetic properties of cells, was measured by microelectrophoresis. Aggregation was calculated microscopically by counting unaggregated RBCs. Obtained values were compared by Mann-Whitney U test. Results. Examination of the RBC membrane of kidney recipients revealed a significant decrease in the amount of Band 3 protein and glycophorin before and after transplantation. Band 3 protein levels reduced at 1 month, glycophorin reduced at 7 months after surgery, with a maximum decrease in these protein fractions by more than 50% by 7 days compared with control values. There was also a decrease in spectrin content for 2 months after surgery with a maximum decrease of 30% by 1 month. In liver recipients, analysis of RBC membrane proteins revealed a decrease in the amount of glycophorin before surgery and further decrease at 2 months of post-transplant period. The maximum decrease in this index was 72% by 7 days after surgery. In addition, there was a fall in spectrin and Band 3 protein levels at 1 month by more than 60% relative to the control values. In donors, there were changes in the protein fraction of RBC membranes in the long-term post-operative period: spectrin and Band 3 protein levels reduced by 2 times at month 2 in kidney donors, while glycophorin levels reduced by 2.3 times at month 1 after operation in liver donors. Similarly, both groups of donors had increased actin levels at month 1 after surgery. The revealed changes in protein levels in the protein phase of RBC membranes were combined with functional indices of RBCs. In kidney recipients, decreased RBC electrophoretic mobility and increased aggregation were detected at 2 months. In liver recipients, the changes in these indicators were at 1 month. A decrease in RBC electrophoretic mobility was detected in donors of both groups. Conclusion. Changes in RBC membrane electronegativity are associated with changes in glycophorin and Band 3 protein levels, whereas in RBC aggregation process in liver/kidney recipients, the structural and functional disorders in the interrelationships of such membrane proteins as spectrin, Band 3 protein, and glycophorin, are significant factors. Alteration of actin determines inhibition of RBC aggregation growth in donors.Врансплантация ΠΎΡ€Π³Π°Π½ΠΎΠ² являСтся эффСктивным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ лСчСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ стадиями ряда тяТСлых Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Однако ΡΠ΅Ρ€ΡŒΠ΅Π·Π½Ρ‹ΠΌ ослоТнСниСм ΠΏΡ€ΠΈ трансплантации ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ€Π΅ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½Ρ‹Π΅ поврСТдСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ связаны с микроциркуляторными Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ ΠΈ Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠ΅ΠΉ Ρ„ΠΎΡ€ΠΌΠ΅Π½Π½Ρ‹Ρ… элСмСнтов ΠΊΡ€ΠΎΠ²ΠΈ. Π­Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΈΠ³Ρ€Π°ΡŽΡ‚ ΡΡƒΡ‰Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠΈ гСмодинамичСских ΠΈ рСологичСских свойств ΠΊΡ€ΠΎΠ²ΠΈ, ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² измСнСния ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ являСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΌ функционирования эритроцита слуТит ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ структуры ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹. Вопрос ΠΎ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ эритроцитарной ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ ΠΏΡ€ΠΈ трансплантации ΠΎΡ€Π³Π°Π½ΠΎΠ² Π½Π° сСгодняшний дСнь Π½Π΅ исслСдован.ЦСль: ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ состава ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ эритроцитов, ΠΈΡ… Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈ элСктрокинСтичСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Ρƒ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΈ ΠΏΠΎΡ‡ΠΊΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ родствСнных Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΏΠΎΡ‡ΠΊΠΈ ΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° ΠΏΠ΅Ρ‡Π΅Π½ΠΈ Π΄ΠΎ ΠΈ Π² Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ послСопСрационного ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π°.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ исслСдования. ΠšΡ€ΠΎΠ²ΡŒ 12 Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠΎΡ‡ΠΊΠΈ, 5 родствСнных Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΏΠΎΡ‡ΠΊΠΈ, 8 Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΈ 4 родствСнных Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° ΠΏΠ΅Ρ‡Π΅Π½ΠΈ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ – Π·Π° 1–2 часа Π΄ΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, Ρ‡Π΅Ρ€Π΅Π· 1 нСдСлю, 1, 2, 7, 10, 12 мСсяцСв послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Π“Ρ€ΡƒΠΏΠΏΡƒ контроля составили 8 Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… Π΄ΠΎΠ±Ρ€ΠΎΠ²ΠΎΠ»ΡŒΡ†Π΅Π².ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования. Π Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ² ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктрофорСза ΠΏΠΎ Лэммли. Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ эритроцитов, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΡƒΡŽ элСктрокинСтичСскиС свойства ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, измСряли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ микроэлСктрофорСза. ΠΠ³Ρ€Π΅Π³Π°Ρ†ΠΈΡŽ рассчитывали микроскопичСски, ΠΏΡƒΡ‚Π΅ΠΌ подсчСта Π½Π΅Π°Π³Ρ€Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… эритроцитов. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΠΎ U-ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡŽ ΠœΠ°Π½Π½Π°β€“Π£ΠΈΡ‚Π½ΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ИсслСдованиС ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ эритроцитов ΠΊΡ€ΠΎΠ²ΠΈ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠΎΡ‡ΠΊΠΈ выявило Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ сниТСниС количСства Π±Π΅Π»ΠΊΠ° полосы 3 ΠΈ Π³Π»ΠΈΠΊΠΎΡ„ΠΎΡ€ΠΈΠ½Π° Π΄ΠΎ ΠΈ послС провСдСния трансплантации. Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ Π±Π΅Π»ΠΊΠ° полосы 3 Π±Ρ‹Π» сниТСн Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 1 мСсяца, Π³Π»ΠΈΠΊΠΎΡ„ΠΎΡ€ΠΈΠ½Π° – Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 7 мСсяцСв послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ с ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½Ρ‹Ρ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ Π±Π΅Π»ΠΊΠΎΠ² Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ Π½Π° 50% ΠΊ 7-ΠΌ суткам ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ контроля. Π’Π°ΠΊΠΆΠ΅ Ρ€Π΅Π³ΠΈΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π»ΠΎΡΡŒ сниТСниС содСрТания спСктрина Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 2 мСсяцСв послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ с ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ сниТСниСм Π½Π° 30% ΠΊ 1 мСсяцу. Π£ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ Π°Π½Π°Π»ΠΈΠ· Π±Π΅Π»ΠΊΠΎΠ² ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ эритроцитов выявил сниТСниС количСства Π³Π»ΠΈΠΊΠΎΡ„ΠΎΡ€ΠΈΠ½Π° Π΄ΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ дальнСйшСС Π΅Π³ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 2 мСсяцСв посттрасплантационного ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π°. МаксимальноС сниТСниС показатСля – Π½Π° 72% – Π±Ρ‹Π»ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ ΠΊ 7-ΠΌ суткам послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, наблюдалось сниТСниС количСства спСктрина ΠΈ Π±Π΅Π»ΠΊΠ° полосы 3 Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 1 мСсяца Π±ΠΎΠ»Π΅Π΅ Ρ‡Π΅ΠΌ Π½Π° 60% ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ контроля. Π£ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² измСнСния Π² Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠΉ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ эритроцитарных ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Ρ€Π΅Π³ΠΈΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ Π² ΠΎΡ‚Π΄Π°Π»Π΅Π½Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ: Ρƒ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΏΠΎΡ‡ΠΊΠΈ сниТСниС Π² 2 Ρ€Π°Π·Π° количСства спСктрина ΠΈ Π±Π΅Π»ΠΊΠ° полосы 3 ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΎΡΡŒ Π½Π° 2-ΠΉ мСсяц, Ρƒ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ сниТСниС Π³Π»ΠΈΠΊΠΎΡ„ΠΎΡ€ΠΈΠ½Π° Π² 2,3 Ρ€Π°Π·Π° – ΠΊ 1-ΠΌΡƒ мСсяцу послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Π’Π°ΠΊΠΆΠ΅ Π² ΠΎΠ±Π΅ΠΈΡ… Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² рСгистрировался рост ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π°ΠΊΡ‚ΠΈΠ½Π° ΠΊ 1-ΠΌΡƒ мСсяцу послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. ВыявлСнныС измСнСния количСства Π±Π΅Π»ΠΊΠΎΠ² Π² Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠΉ Ρ„Π°Π·Π΅ эритроцитарных ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΡΠΎΡ‡Π΅Ρ‚Π°Π»ΠΈΡΡŒ с Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ показатСлями эритроцитов. Π£ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠΎΡ‡ΠΊΠΈ сниТСниС ЭЀПЭ ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΈ наблюдалось Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 2 мСсяцСв, Ρƒ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ измСнСния Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ зафиксированы Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 1 мСсяца. Π£ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² ΠΎΠ±Π΅ΠΈΡ… Π³Ρ€ΡƒΠΏΠΏ Π±Ρ‹Π»ΠΎ выявлСно ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ ЭЀПЭ.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π‘ΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, Ρ‡Ρ‚ΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ эритроцитов сопряТСно с ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ содСрТания Π³Π»ΠΈΠΊΠΎΡ„ΠΎΡ€ΠΈΠ½Π° ΠΈ Π±Π΅Π»ΠΊΠ° полосы 3, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π² процСссС Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΈ эритроцитов Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² послС трансплантации ΠΏΠ΅Ρ‡Π΅Π½ΠΈ/ΠΏΠΎΡ‡ΠΊΠΈ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ структурно-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ взаимосвязСй Ρ‚Π°ΠΊΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ², ΠΊΠ°ΠΊ спСктрин, Π±Π΅Π»ΠΎΠΊ полосы 3, Π³Π»ΠΈΠΊΠΎΡ„ΠΎΡ€ΠΈΠ½. ИзмСнСниС Π°ΠΊΡ‚ΠΈΠ½Π° опрСдСляСт сдСрТиваниС роста Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΈ эритроцитов Ρƒ Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ²

    Β«Π‘Π˜ΠΠ”Π ΠžΠœ ΠžΠ‘ΠšΠ ΠΠ”Π«Π’ΠΠΠ˜Π―Β» Π‘Π•Π›Π•Π—Π•ΠΠžΠ§ΠΠžΠ™ ΠΠ Π’Π•Π Π˜Π•Π™ ΠŸΠžΠ‘Π›Π• ΠžΠ Π’ΠžΠ’ΠžΠŸΠ˜Π§Π•Π‘ΠšΠžΠ™ Π’Π ΠΠΠ‘ΠŸΠ›ΠΠΠ’ΠΠ¦Π˜Π˜ ΠŸΠ•Π§Π•ΠΠ˜

    Get PDF
    Splenic artery steal syndrome is one of possible arterial complications after orthotopic liver transplantation. Material includes personal experience in diagnostics and treatment of this syndrome. In each case complication was opportunely suspected basing on laboratory and ultrasound data and proved by angiography. Successful treatment was performed using different variants of splenic artery embolization. Одним ΠΈΠ· Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ослоТнСний послС ортотопичСской трансплантации ΠΏΠ΅Ρ‡Π΅Π½ΠΈ являСтся синдром обкрадывания сСлСзСночной Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ. Π’ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ прСдставлСн собствСнный ΠΎΠΏΡ‹Ρ‚ диагности- ΠΊΠΈ ΠΈ лСчСния этого состояния. Π’ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ наблюдСнии ΡƒΠ΄Π°Π»ΠΎΡΡŒ достаточно своСврСмСнно Π·Π°ΠΏΠΎΠ΄ΠΎΠ·Ρ€ΠΈΡ‚ΡŒ ΠΏΠ°- тологичСский синдром Π½Π° основании ΠΈΠ½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΡ‚ΡŒ Π΄ΠΈΠ°Π³Π½ΠΎΠ· ΠΏΡ€ΠΈ Π°Π½Π³ΠΈΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ. УспСшная коррСкция Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡƒΡ‚Π΅ΠΌ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² эмболизации сСлСзСноч- Π½ΠΎΠΉ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ.
    • …
    corecore