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Abstract—A bubble rising from the state of rest in a viscous incompressible fluid is considered. A for-
mula for the Basset force acting on the bubble in a viscous fluid is obtained, which differs by a multiplier
from the Basset force for a solid particle. The problem of unsteady rise of a bubble is solved analyti-
cally. The bubble rise is also studied experimentally and the experimental data are compared with the
theoretical results.
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Investigation of the laws of bubble motion in a fluid is a classical problem of hydrodynamics. The interest
in the dynamics of bubbles is attributable to their role in a number of practical problems, connected with
two-phase flows in power plants, heat transfer in boiling, cavitation, underwater acoustics, flotation, cooling
of nuclear reactors, and other physical processes. In the problems listed above, a significant factor is the
variation of the bubble velocity in the fluid.

An analysis of the literature indicated that only a limited number of studies is devoted to unsteady motion
of a single bubble. In most experiments, a steady rise of a single bubble (the drag law, the loss of stability
of the bubble shape) or a high-concentration system of bubbles are considered. The theoretical analysis of
unsteady motion of dispersed inclusions was performed mainly for solid spherical particles [1, 2]. In [1],
the results of experimental study are also presented.

Among the experimental studies of single-bubble motion with account of unsteady and “memory” ef-
fects, the papers [3] and [4] should be noted. In [3], using the dimension analysis for Reynolds numbers Re
ranging between 0.01 and 100, an empirical dependence of the bubble drag coefficient on Re was obtained
with account for the unsteady and “memory” forces. However, the results obtained cannot be used for prac-
tical calculations due to indeterminacy of some parameters entering in this dependence. The analysis of
experimental results [4] for the velocity of unsteady rise of a bubble is impossible because the authors did
not specify the values of physical parameters of the fluid.

Among the theoretical studies of unsteady motion of a bubble in a viscous fluid, we note papers [5–8].
The motion of a solid, liquid, and gaseous spherical inclusion was investigated on the basis of an approxi-
mate solution of the linearized Navier–Stokes equations by an operational method. The main result of [5–8]
is the conclusion that, for a solid particle and a gas bubble of the same size, the dimensionless velocities
u/u∞ are close to each other.

A detailed review of the theoretical and experimental results on the unsteady rise of a bubble is given in
[9]. The aim of the present study is an experimental and theoretical analysis of the rise of a single bubble in
a viscous fluid.
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1. THEORETICAL ANALYSIS

We will consider only a translational motion of the bubble center and estimate the drag force FC exerted
on the bubble in its unsteady motion in a viscous fluid. We will use the approach similar to [10], applied
earlier for determining FC of a solid sphere.

As in [10], we will study the fluid flow at small Reynolds numbers, assuming that the bubble shape is
spherical. The only difference is in the boundary condition. For a solid sphere, the no-slip conditions are
specified, while for a bubble occupied by a low-viscosity gas, we will use the no-flow condition and the
absence of a shear stress on the bubble surface.

At first, we will calculate the drag force exerted on a bubble of radius R, when it oscillates harmonically
with the velocity u = um exp(−iωt), where um is the oscillation amplitude, ω is the oscillation frequency,
and t is the time. As in [10], the fluid velocity is sought in the form

V = exp(−iωt)curl curl( f (r)um). (1.1)

We substitute (1.1) in the equation

∂
∂ t

curl V = νΔcurlV.

Here, ν is the kinematic viscosity of the fluid. For the function f (r), we obtain the equation

Δ2 f +
iω
ν

Δ f = 0. (1.2)

After the integration of (1.2), we obtain:

f ′ = a
exp(icr)

r2

(
r − 1

ic

)
+

b
r2 . (1.3)

Here, a and b are the integration constants. Since ic =−(1− i)
√

ω/2ν , the right-hand side of Eq. (1.2)
tends to zero, as r → ∞. In the spherical coordinates, with account of (1.1) the components of velocity V
can be written as follows:

Vr = exp(−iωt)(curl curl f um)r = 2exp(−iωt)um cosθ
f ′

r
, (1.4)

Vθ = exp(−iωt)(curl curl f um)θ = exp(iωt)

(
icaexp(icr)

r
− f ′

r

)
um sinθ , (1.5)

where θ is the polar angle, measured from the bubble velocity direction.
Since on the bubble surface the radial velocity of the fluid is equal to the velocity of the surface points in

the radial direction r, then for the radial velocity at r = R from (1.4) we obtain:

f ′(R)
R

=−1
2
. (1.6)

With account of (1.6), the condition of the absence of shear stresses on the bubble surface
(

1
r

∂Vr

∂θ
+

∂Vθ

∂ r
− Vθ

r

)
r=R

= 0

takes the form
3
R

+

(
3
R

− ic

)
icaexp(icR)

R
= 0.
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There follows:
icaexp(icR)

R
=− 1

1 − icR/3
=− 1

1 − (i − 1)Rq/3
.

where q =
√

ω/2ν .
For limited valued of ω and small R, such that (R/3)

√
ω/2ν ≪ 1, we neglect the quantity (1 −

i)(R/3)
√

ω/2ν in the denominator, as compared to unity, and assume that

icaexp(icR)
R

=−1. (1.7)

The projection of the bubble drag FC on the direction of um is calculated using the formula

FC =

π∫

0

(
−Pcos θ + 2μ

∂Vr

∂ r
cos θ

)
2πR2 sinθ dθ , (1.8)

where P is the pressure and μ is the dynamic viscosity of the fluid. Here, we take into account that the shear
stress on the bubble surface vanishes.

The pressure distribution at r =R is found by the integration of the projection of the fluid motion equation
on the θ -direction over θ at r = R:

∂Vθ

∂ r
=− 1

ρR
∂P
∂θ

+ ν
(

ΔVθ +
2

R2

∂Vr

∂θ
− Vθ

R2 sin2 θ

)
, (1.9)

where ρ is the fluid density. After the substitution of the velocity in (1.9) with account of (1.6) and (1.7) and
the integration over θ we obtain:

P = P0 exp(−iωt) + νρ cos θum exp(−iωt)

(
1
R

− ic + R(ic)2 − iωρR
2μ

)
. (1.10)

Since the integral (1.8) of the constant P0 is zero, this constant was not calculated.
After the substitution of the pressure P and the derivative ∂Vr/∂ r in Eq. (1.8), we obtain the expression

for the drag of a bubble, oscillating harmonically with the velocity um exp(−iωt):

Fc =−πρR2um exp(−iωt)

[
4ν
R

− 2
3

iωt +
2
3
(1 − i)

√
2ν
R

√
ω
]
, (1.11)

where the sign “−” indicates the direction of the drag force, opposite to the bubble velocity.
We will now calculate the drag force of a bubble moving with an arbitrary velocity u(t). We represent

the bubble velocity as a Fourier integral

u(t) =
1

2π

∞∫

−∞

uω exp(−iωt)dω , (1.12)

where

uω =

∞∫

−∞

u(τ)exp(iωτ)dτ .

In this case, the drag force is represented as the integral of the drag forces for the motions with the
velocities equal to the Fourier components uω exp(−iωt). These forces are calculated using formula (1.12),
which with account of the equality (du/dt)ω =−iωuω takes the form:

−πρR3 exp(−ωt)

(
4ν
R2 uω +

2
3

(
du
dt

)
ω

+
2
3

√
2ν
R

(1 + i)√
ω

)
. (1.13)
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Relations (1.13) differ from the similar formula for the solid sphere [10] only by the multipliers in the
first and third terms. Accordingly, the Fourier integral differs from the analogous integral only by these
coefficients. Repeating the calculations performed in [10], we obtain

FC =−2πρR3
(

1
3

du
dt

+
2ν
R2 u +

2
3

R

√
ν
π

t∫

−∞

du
dτ

dτ√
t − τ

)
. (1.14)

The first term in expression (1.14) describes the force attributable to the added mass of the sphere
in a potential flow. The second term gives the contribution to the viscous drag in accordance with the
Hadamard–Rybcziski formula for a bubble. The third term describes the Basset force, which for a bubble is
9/2-fold smaller than for a solid sphere.

We will now consider a model of bubble rise in an unbounded viscous fluid. With account of the gravity
force, the Archimedes force, and the drag force, the equation of bubble motion takes the form:

Vpρp
du
dt

=−1
2

Vpρ
du
dt

− 4πμRu − Vp(ρp − ρ)g − 4
3

πR2

√
ν
π

t∫

−∞

du
dτ

dτ√
t − τ

, (1.15)

where Vp is the bubble volume, ρp is the gas density, and g is the gravity force acceleration. Since ρp ≪ ρ ,
we neglect the terms with ρp in (1.15).

Introducing the characteristic time scale T0 = ρR2/6μ and the dimensionless time t̄ = t/T0, we rewrite
Eq. (1.15) in the form:

du
dτ̄

+ u +

√
2

3π

t̄∫

−∞

du
dt̄

dτ̄√
t̄ − τ̄

= 2gT0. (1.16)

Using conditions u(0) = 0 and du/dτ̄ = 0 for τ̄ < 0, we represent Eq. (1.16) in the form

du
dt̄

+

t̄∫

0

du
dτ̄

dτ̄ +
√

23π
t̄∫

0

du
dτ̄

dτ̄√
t̄ − τ̄

= 2gT0.

Introducing the acceleration a = du/dt̄, we can write

a +

t̄∫

0

adt +
√

23π
t̄∫

−∞

a
dτ̄√

t̄ − τ̄
= 2gT0.

This equation has an exact solution

a(t̄) =
4√
π

gT0

∞∫

0

exp

(
−
√

2
3

t̄x

)(
cos

√
10
3

t̄x − 1√
5

sin

√
10
3

t̄x

)
exp(−x2)dx,

which is obtained using the operational Laplace transform method [11].
When the acceleration is found, the velocity is calculated as

u(t̄) =

t̄∫

0

at̄ dt̄.
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2. EXPERIMENTAL STUDY

The experiments were performed with a set-up, which consisted of a transparent cavity with plane-
parallel walls, filled with a working fluid, a facility for bubble generation, and a system of visualization of
the single-bubble rise (Fig. 1).

The cavity, made from an optic glass 5 mm thick, had a prismatic shape, measured 150×150×600 mm.
To vary the bubble size, we used needles with different outlet diameters, placed in the base of the cavity.

The visualization system included the light sources (luminescent lamps of power 18 W), mounted on the
back panel throughout the entire height of the cavity, a Panasonic HDC-SD60 digital video camera, and two
Citius C100 high-speed video cameras. Video filming of the process under study at different angles made
it possible to increase the accuracy and to ensure the control of variation of the bubble rise parameters in
different stages of bubble motion. The first camera recorded the bubble dynamics in the initial unsteady
stage of motion, the second recorded the bubble motion on the entire trajectory. The videofilming was
performed with the 1280×670 resolution, speed of 700 frames/s, and exposure time of 1/500–1/2000 s. The
third camera was used for measuring the bubble size; the exposure area was 5×5 cm with 2-fold zoom.

To increase the accuracy of the experimental data, in this study we used a liquid with stable physico-
chemical properties in the range of working temperatures 17–22∘C, namely, a solution of a castor oil in
alcohol.

In the experiments, we determined the following parameters: the dynamic viscosity coefficient μl , the
solution density ρl , the bubble diameter D, and the bubble rising velocity u. Using the experimentally
measured parameters, we calculated the values of the Reynolds number Re and the drag coefficient C.
The density of the liquid was measured by an areometer (ρl = 935–960 kg/m3). The solution viscosity
μl = 0.23–1.13 Pa×s was estimated using the Stokes formula for gravitational settling of a solid particle.
The bubble diameter D= 3.2–5.5 mm was determined from the processing of the photographs. The path and
the velocity of the bubble were determined from a frame-by-frame processing of the results of high-speed
videofilming. The velocity of the bubble rise at a certain height hi was calculated using the formula

u(hi) =
hi+1 − hi−1

Δti
(i = 1, 2, . . . , N),

where hi−1, hi+1 are the paths covered by the bubble on the i − 1-th and i + 1-th frames, respectively; Δi

is the time interval between the i − 1-th and i + 1-th frames, and N is the number of the frames.
The equation of bubble motion contains the viscous drag law. For small Re< 1, the drag force coefficient

of a spherical inclusion is given by the Hadamard–Rybczinski formula

C =
24
Re

(
3μ∗ + 2
3 + 3μ∗

)
, Re =

ρluD
μl

. (2.1)

Here, μ∗ = μ/μl is the ratio of the dynamic viscosities of the dispersed μ and carrier μl phase. In the
limiting cases, from (2.1) the drag force coefficient takes the form

C =
A

Re
, (2.2)

where A = 16 for a bubble (μ∗ → 0) and A = 24 for a solid sphere (μ∗ → ∞).
To refine the drag force coefficient, we performed a series of experiments in a steady-state regime. The

results are given in Table 1: experimental values of the steady-state bubble rise velocity ue, Reynolds number
Re, and the drag force coefficient Ce. In calculating the Reynolds number, we used the experimental data for
the steady-state bubble rise velocity, the bubble size, and the physical properties of the fluid. The value of the
experimental drag force coefficient Ce was determined from the bubble motion equation for the steady-state
regime using the formula

Ce =
4
3

g
(
ρl − ρ

) D
ρlu2

e
.
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Fig. 1. Scheme (a) and photograph (b) of the experimental set-up: (1) cavity; (2) working fluid; (3) bubble; (4) bubble
generator; (5) video cameras; (6) computer; (7) tube; (8) measuring rule; (9) electric motor; (10) optic bench.

The relative error in determining Ce was calculated using the formula

δCe = δD + 2δue, (2.3)

where δD = 3% and δue = 0.1%. In the estimates of δCe, we neglect the errors in the measurement of ρ
and ρl due to their smallness. For our experimental conditions, the errors of the experimental determina-
tion of the drag force coefficient did not exceed 3%. By analogy with (2.2), the dependence Ce(Re) was
approximated by the formula

Ce =
15.5
Re

. (2.4)

The values of the drag force coefficients calculated using formula (2.2) for A = 16 and A = 15.5 are given
in table. In Fig. 2, we have plotted both the calculated and experimental values of the drag force coefficient
the Reynolds number ranging between 0.03 and 0.55. The minimal difference between the theoretical and
experimental value of Ce is observed for dependence (2.3) with a mean-square deviation δ = 1.9%. For the
Hadamard–Rybcziski dependence (A = 16), the deviation is δ = 2.2%. The Stokes expression for the drag
force coefficient (A = 24) gives the results which differ significantly from the experimental data (Fig. 2).
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Fig. 2. Drag force coefficient as a function of the Reynolds number: (1–3) A = 24, 16, 15.5; (4) experimental values of Ce.

Fig. 3. Time dependence of the bubble rise velocity with (1) and without (2) taking the Basset force into account;
(3) experimental data.

Experimental results for steady-state bubble rise

D, mm ρl , kg/m3 μl , Pa s ue, cm/s Re A = 16 A = 15.5 Ce

3.7 960 1.13 0.88 0.028 571.4 553.6 624

3.6 960 0.92 1.2 0.045 355.5 344.4 326

3.9 960 0.92 1.4 0.057 280.7 271.9 260

4.1 960 0.92 1.5 0.064 250.0 242.2 238

4.4 960 0.92 1.75 0.08 200.0 193.7 188

5.5 960 1.13 1.96 0.091 175.8 170.3 187

4.8 960 0.92 2.0 0.1 160.0 155 157

4.9 960 0.92 2.09 0.106 150.9 146.2 146

5.5 960 0.92 2.55 0.146 109.6 106.2 110

3.2 935 0.23 3.6 0.47 34.0 32.9 28.9

3.4 935 0.23 4.0 0.56 28.6 27.7 27.7

3. A COMPARATIVE ANALYSIS OF THE RESULTS

Figure 3 shows the time dependence of the bubble rise velocity obtained from the solution of bubble
motion equation (1.15) with account of all force components (curve 1). The calculations were performed
for the experimental parameters given above. The value of the constant in the viscous drag law was taken
from the experiment A = 15.5. We also plot the dependence u(t), in which the added mass force is taken
into account, but the Basset force is neglected (curve 2).

An analysis of the data given in Fig. 3 shows that the dependence u(t) obtained without the Basset force
does not reflect the real dynamics of the bubble rise on the unsteady interval of its trajectory but describes
adequately the steady-state regime.
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The dependence u(t), calculated with account of the Basset force, agrees satisfactorily with the experi-
mental data on the initial interval of the bubble trajectory (the difference does not exceed 5%). The calculated
dependences u(t) are characterized by a slow transition to the steady-state regime. For t > t∗ = 0.15 s, the
difference between the calculated and experimental bubble velocity is within 9%. We note that the similar
“long” transition of the particle velocity to the steady-state regime was obtained in the theoretical studies of
unsteady motion of a dispersed particle [3, 13]. The discrepancy between the calculated and experimental
data on the bubble dynamics is attributable, apparently, to an inexact fulfillment of the condition u = 0 at
t = 0 in the experiments.

Summary. The results of theoretical study of unsteady rise of a bubble in a viscous fluid at small Reynolds
numbers indicated that the unsteady Basset force affects significantly the laws of the bubble rise.

A comparison of the theoretical and experimental data for the bubble rise velocity on the unsteady interval
demonstrated a satisfactory agreement of the results.

The work received financial support from the RF President grant (MK-1259.2013.1) and the RF Ministry
of Science and Education in the framework of State Program No. 2014/223 (code 1567).
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