315 research outputs found

    Lectin-Based Food Poisoning: A New Mechanism of Protein Toxicity

    Get PDF
    BACKGROUND: Ingestion of the lectins present in certain improperly cooked vegetables can result in acute GI tract distress, but the mechanism of toxicity is unknown. In vivo, gut epithelial cells are constantly exposed to mechanical and other stresses and consequently individual cells frequently experience plasma membrane disruptions. Repair of these cell surface disruptions allows the wounded cell to survive: failure results in necrotic cell death. Plasma membrane repair is mediated, in part, by an exocytotic event that adds a patch of internal membrane to the defect site. Lectins are known to inhibit exocytosis. We therefore tested the novel hypothesis that lectin toxicity is due to an inhibitory effect on plasma membrane repair. METHODS AND FINDINGS: Repair of plasma membrane disruptions and exocytosis of mucus was assessed after treatment of cultured cell models and excised segments of the GI tract with lectins. Plasma membrane disruptions were produced by focal irradiation of individual cells, using a microscope-based laser, or by mechanical abrasion of multiple cells, using a syringe needle. Repair was then assessed by monitoring the cytosolic penetration of dyes incapable of crossing the intact plasma membrane. We found that cell surface-bound lectins potently inhibited plasma membrane repair, and the exocytosis of mucus that normally accompanies the repair response. CONCLUSIONS: Lectins potently inhibit plasma membrane repair, and hence are toxic to wounded cells. This represents a novel form of protein-based toxicity, one that, we propose, is the basis of plant lectin food poisoning

    Combination of (M)DSC and surface analysis to study the phase behaviour and drug distribution of ternary solid dispersions

    Get PDF
    Purpose: Miscibility of the different compounds that make up a solid dispersion based formulation play a crucial role in the drug release profile and physical stability of the solid dispersion as it defines the phase behaviour of the dispersion. The standard technique to obtain information on phase behaviour of a sample is (modulated) differential scanning calorimetry ((M)DSC). However, for ternary mixtures (M)DSC alone is not sufficient to characterize their phase behaviour and to gain insight into the distribution of the active pharmaceutical ingredient (API) in a two-phased polymeric matrix. Methods: MDSC was combined with complementary surface analysis techniques, specifically time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM). Three spray-dried model formulations with varying API/PLGA/PVP ratios were analyzed. Results: The distribution of the API in the ternary solid dispersions depended on formulation parameters. The extent of API surface coverage and therefore the distribution of the API over both polymeric phases differed significantly for the three formulations. Conclusions: Combining (M)DSC and surface analysis rendered additional insights in the composition of mixed phases in complex systems, like ternary solid dispersions

    Val103Ile polymorphism of the melanocortin-4 receptor gene (MC4R) in cancer cachexia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>At present pathogenic mechanisms of cancer cachexia are poorly understood. Previous evidence in animal models implicates the melanocortin-4 receptor gene (<it>MC4R</it>) in the development of cancer cachexia. In humans, <it>MC4R </it>mutations that lead to an impaired receptor function are associated with obesity; in contrast, the most frequent polymorphism (Val103Ile, rs2229616; heterozygote frequency approximately 2%) was shown to be negatively associated with obesity. We tested if cancer patients that are homo-/heterozygous for the Val103Ile polymorphism are more likely to develop cachexia and/or a loss of appetite than non-carriers of the 103Ile-allele.</p> <p>Methods</p> <p>BMI (body mass index in kg/m<sup>2</sup>) of 509 patients (295 males) with malignant neoplasms was determined; additionally patients were asked about premorbid/pretherapeutical changes of appetite and weight loss. Cachexia was defined as a weight loss of at least 5% prior to initiation of therapy; to fulfil this criterion this weight loss had to occur independently of other plausible reasons; in single cases weight loss was the initial reason for seeing a physician. The average age in years (± SD) was 59.0 ± 14.5 (males: 58.8 ± 14.0, females 59.2 ± 14.0). Blood samples were taken for genotyping of the Val103Ile by PCR- RFLP.</p> <p>Results</p> <p>Most of the patients suffered from lymphoma, leukaemia and gastrointestinal tumours. 107 of the patients (21%) fulfilled our criteria for cancer cachexia. We did not detect association between the Val103Ile polymorphism and cancer cachexia. However, if we exploratively excluded the patients with early leucaemic stages, we detected a trend towards the opposite effect (p < 0.05); heterozygotes for the 103Ile-allele developed cancer cachexia less frequently in comparison to the rest of the study group. Changes of appetite were not associated with the 103Ile-allele carrier status (p > 0.39).</p> <p>Conclusion</p> <p>Heterozygotes for the 103Ile-allele are not more prone to develop cancer cachexia than patients without this allele; possibly, Ile103 carriers might be more resistant to cancer cachexia in patients with solid tumors. Further studies of the melanocortinergic system in cachexia of patients with solid tumors are warranted.</p

    A Critical Role for CD8 T Cells in a Nonhuman Primate Model of Tuberculosis

    Get PDF
    The role of CD8 T cells in anti-tuberculosis immunity in humans remains unknown, and studies of CD8 T cell–mediated protection against tuberculosis in mice have yielded controversial results. Unlike mice, humans and nonhuman primates share a number of important features of the immune system that relate directly to the specificity and functions of CD8 T cells, such as the expression of group 1 CD1 proteins that are capable of presenting Mycobacterium tuberculosis lipids antigens and the cytotoxic/bactericidal protein granulysin. Employing a more relevant nonhuman primate model of human tuberculosis, we examined the contribution of BCG- or M. tuberculosis-elicited CD8 T cells to vaccine-induced immunity against tuberculosis. CD8 depletion compromised BCG vaccine-induced immune control of M. tuberculosis replication in the vaccinated rhesus macaques. Depletion of CD8 T cells in BCG-vaccinated rhesus macaques led to a significant decrease in the vaccine-induced immunity against tuberculosis. Consistently, depletion of CD8 T cells in rhesus macaques that had been previously infected with M. tuberculosis and cured by antibiotic therapy also resulted in a loss of anti-tuberculosis immunity upon M. tuberculosis re-infection. The current study demonstrates a major role for CD8 T cells in anti-tuberculosis immunity, and supports the view that CD8 T cells should be included in strategies for development of new tuberculosis vaccines and immunotherapeutics
    • …
    corecore