92 research outputs found

    The influence of social support on the wellbeing of immigrants residing in Italy: Sources and functions as predictive factors for life satisfaction levels, sense of community and resilience

    Get PDF
    Moving from one country to another involves not only separation from the country of origin, but also the tiring process of integration into a new physical, institutional, and sociocultural context, which may expose migrants to acculturation stress. The loss of former support networks, or at the very least their transformation, presents immigrants with the need to rebuild their social support systems in the host country, involving an active search for support. Therefore, the aim of study is to analyze the structure of informal social support and its capacity to predict immigrants’ sense of community, resilience, and satisfaction with life. The results confirm that social support predicts satisfaction with life, sense of community, and resilience. Our findings highlight the way sources and frequency of support, and the satisfaction with which they are associated, have different degrees of predictive value on the dependent variables under investigation. In this study, it can be concluded that social support is an important factor in the well-being of migrants and their integration into the host community. The results have an important practical value in promoting interventions that improve immigrants’ support networks and, consequently, increase their satisfaction with life, sense of community, and resilience.Funding for open access charge: Universidad de Málaga / CBU

    The influence of social support on the wellbeing of immigrants residing in Italy: Sources and functions as predictive factors for life satisfaction levels, sense of community and resilience

    Get PDF
    Moving from one country to another involves not only separation from the country of origin, but also the tiring process of integration into a new physical, institutional, and sociocultural context, which may expose migrants to acculturation stress. The loss of former support networks, or at the very least their transformation, presents immigrants with the need to rebuild their social support systems in the host country, involving an active search for support. Therefore, the aim of study is to analyze the structure of informal social support and its capacity to predict immigrants’ sense of community, resilience, and satisfaction with life. The results confirm that social support predicts satisfaction with life, sense of community, and resilience. Our findings highlight the way sources and frequency of support, and the satisfaction with which they are associated, have different degrees of predictive value on the dependent variables under investigation. In this study, it can be concluded that social support is an important factor in the well-being of migrants and their integration into the host community. The results have an important practical value in promoting interventions that improve immigrants’ support networks and, consequently, increase their satisfaction with life, sense of community, and resilience

    First Report on «Hop Stunt Viroid» (HSVd) from Some Mediterranean Countries

    Get PDF
    Hop stunt viroid (HSVd) has a very wide host range including most stone fruit trees. Among them, apricot is one of the most important host crops in the Mediterranean basin. In this study non-isotopic molecular hybridisation revealed, for the first time, the presence of HSVd on apricot in four Mediterranean countries (Cyprus, Greece, Morocco and Turkey). The results obtained by this technique were confirmed by northern-blot and RT-PCR analyses. The data presented in this work indicate a wider geographical distribution of this viroid than hitherto known and emphasise the need for this kind of study as part of the control effort

    Natural occurrence of Cucumber mosaic virus infecting water mint (Mentha aquatica) in Antalya and Konya, Turkey

    Get PDF
    A virus causing a disease in mint (the aromatic and culinary plant) has recently become a problem in the Taurus Mountains, a mountain range in the Mediterranean region of Turkey. To detect the virus and investigate its distribution in the region, mint leaf samples were collected from the vicinity of spring areas in the plateaus of Antalya and Konya in 2009. It was found that Cucumber mosaic virus (CMV) was detected in 27.08% of symptomatic samples tested by DAS-ELISA. To the best of our knowledge, this is the first report of CMV on mint plants in this region of Turkey

    Host range and symptomatology of Pepino mosaic virus strains occurring in Europe

    Get PDF
    Pepino mosaic virus (PepMV) has caused great concern in the greenhouse tomato industry after it was found causing a new disease in tomato in 1999. The objective of this paper is to investigate alternative hosts and compare important biological characteristics of the three PepMV strains occurring in Europe when tested under different environmental conditions. To this end we compared the infectivity and symptom development of three, well characterized isolates belonging to three different PepMV strains, EU-tom, Ch2 and US1, by inoculating them on tomato, possible alternative host plants in the family Solanaceae and selected test plants. The inoculation experiments were done in 10 countries from south to north in Europe. The importance of alternative hosts among the solanaceous crops and the usefulness of test plants in the biological characterization of PepMV isolates are discussed. Our data for the three strains tested at 10 different European locations with both international and local cultivars showed that eggplant is an alternative host of PepMV. Sweet pepper is not an important host of PepMV, but potato can be infected when the right isolate is matched with a specific cultivar. Nicotiana occidentalis 37B is a useful indicator plant for PepMV studies, since it reacts with a different symptomatology to each one of the PepMV strains.Ravnikar, M.; Blystad, D.; Van Der Vlugt, R.; Alfaro Fernández, AO.; Del Carmen Cordoba, M.; Bese, G.; Hristova, D.... (2015). Host range and symptomatology of Pepino mosaic virus strains occurring in Europe. European Journal of Plant Pathology. 143(1):43-56. doi:10.1007/s10658-015-0664-1S43561431Alfaro-Fernández, A., Córdoba-Sellés, M. C., Herrera-Vásquez, J. A., Cebrián, M. C., & Jordá, C. (2009). Transmission of Pepino mosaic virus by the fungal vector Olpidium virulentus. Journal of Phytopathology, 158, 217–226.Charmichael, D. J., Rey, M. E. C., Naidoo, S., Cook, G., & van Heerden, S. W. (2011). First report of Pepino mosaic virus infecting tomato in South Africa. Plant Disease, 95(6), 767.2.Córdoba, M. C., Martínez-Priego, L., & Jordá, C. (2004). New natural hosts of Pepino mosaic virus in Spain. Plant Disease, 88, 906.Córdoba-Sellés, M. C., García-Rández, A., Alfaro-Fernández, A., & Jordá-Gutiérrez, C. (2007). Seed transmission of pepino mosaic virus and efficacy of tomato seed disinfection treatments. Plant Disease, 91, 1250–1254.Efthimiou, K. E., Gatsios, A. P., Aretakis, K. C., Papayannis, L. C., & Katis, N. I. (2011). First report of Pepino mosaic virus infecting greenhouse cherry tomato in Greece. Plant Disease, 95(1), 78.2.Fakhro, A., von Bargen, S., Bandte, M., Büttner, C., Franken, P., & Schwarz, D. (2011). Susceptibility of different plant species and tomato cultivars to two isolates of Pepino mosaic virus. European Journal of Plant Pathology, 129, 579–590.Gómez, P., Sempere, R. N., Elena, S. F., & Aranda, M. A. (2009). Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. Journal of Virology, 83, 12378–12387.Hanssen, I. M., Paeleman, A., Wittemans, L., Goen, K., Lievens, B., Bragard, C., Vanachter, A. C. R. C., & Thomma, B. P. H. J. (2008). Genetic characterization of Pepino mosaic virus isolates from Belgian greenhouse tomatoes reveals genetic recombination. European Journal of Plant Pathology, 121, 131–146.Hanssen, I. M., Paeleman, A., Vandewoestijne, E., Van Bergen, L., Bragard, C., Lievens, B., Vanachter, A. C. R. C., & Thomma, B. P. H. J. (2009). Pepino mosaic virus isolates and differential symptomatology in tomato. Plant Pathology, 58, 450–460.Hanssen, I. M., Mumford, R., Blystad, D.-G., Cortez, I., Hasiów-Jaroszewska, B., Hristova, D., Pagán, I., Pereira, A.-M., Peters, J., Pospieszny, H., Ravnikar, M., Stijger, I., Tomassoli, L., Varveri, C., van der Vlugt, R., & Nielsen, S. L. (2010). Seed transmission of Pepino mosaic virus in tomato. European Journal of Plant Pathology, 126, 145–152.Hasiów-Jaroszewska, B., Borodynko, N., Jackowiak, P., Figlerowicz, M., & Pospieszny, H. (2010a). Pepino mosaic virus – a pathogen of tomato crops in Poland: biology, evolution and diagnostics. Journal of Plant Protection Research, 50, 470–476.Hasiów-Jaroszewska, B., Jackowiak, P., Borodynko, N., Figlerowicz, M., & Pospieszny, H. (2010b). Quasispecies nature of Pepino mosaic virus and its evolutionary dynamics. Virus Genes, 41, 260–267.Jeffries, C. J. (1998). FAO/IPGRI technical guidelines for the safe movement of germplasm no. 19. Potato. Food and agriculture organization of the United Nations, Rome/International Plant Genetic Resources Institute, Rome pp 177Jones, R. A. C., Koenig, R., & Lesemann, D. E. (1980). Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Annals of Applied Biology, 94, 61–68.Jordá, C., Lázaro Pérez, A., & Martínez Culebras, P. (2001). First report of Pepino mosaic virus on natural hosts. Plant Disease, 85, 1292.King, A. M. Q., Adams, M. J., Carstens, E. B., Lefkowitz, E. J., (eds). (2012). potexvirus, pp 912–915, in virus taxonomy, classification and nomenclature of viruses; ninth report of the international committee on taxonomy of viruses (p 1327) London, UK: Elsevier Academic PressLing, K.-S., & Zhang, W. (2011). First report of Pepino mosaic virus infecting tomato in Mexico. Plant Disease, 95(8), 1035.Martin, J., & Mousserion, C. (2002). Potato varieties which are sensitive to the tomato strains of Pepino mosaic virus (PepMV). Phytoma Défence Végétaux, 552, 26–28.Mehle, N., Gutierrez-Aguirre, I., Prezelj, N., Delić, D., Vidic, U., & Ravnikar, M. (2014). Survival and transmission of potato virus Y, pepino mosaic virus, and potato spindle tuber viroid in water. Applied and Environmental Microbiology, 80(4), 1455–1462.Moreno-Pérez, M. G., Pagán, I., Aragón-Caballero, L., Cáceres, F., Aurora Fraile, A., & García-Arenal, F. (2014). Ecological and genetic determinants of Pepino mosaic virus emergence. Journal of Virology, 88(6), 3359–3368.Noël, P., Hance, T., & Bragard, C. (2014). Transmission of the pepino mosaic virus by whitefly. European Journal of Plant Pathology, 138, 23–27.Pagan, I., Cordoba-Selles, M. D., Martinez-Priego, L., Fraile, A., Malpica, J. M., Jorda, C., & Garcia-Arenal, F. (2006). Genetic structure of the population of pepino mosaic virus infecting tomato crops in Spain. Phytopathology, 96, 274–279.Papayiannis, L. C., Kokkinos, C. D., & Alfaro-Fernández, A. (2012). Detection, characterization and host range studies of Pepino mosaic virus in Cyprus. European Journal of Plant Pathology, 132, 1–7.Pospieszny, H., Haslow, B., & Borodynko, N. (2008). Characterization of two Polish isolates of Pepino mosaic virus. European Journal of Plant Pathology, 122, 443–445.Salomone, A., & Roggero, P. (2002). Host range, seed transmission and detection by ELISA and lateral flow of an Italian isolate of Pepino mosaic virus. Journal of Plant Pathology, 84, 65–68.Samson, R. G., Allen, T. C., & Whitworth, J. L. (1993). Evaluation of direct tissue blotting to detect potato viruses. American Potato Journal, 70, 257–265.Schwarz, D., Beuch, U., Bandte, M., Fakhro, A., Büttner, C., & Obermeier, C. (2010). Spread and interaction of pepino mosaic virus (PepMV) and pythium aphanidermatum in a closed nutrient solution recirculation system: effects on tomato growth and yield. Plant Pathology, 59(3), 443–452.Shipp, J. L., Buitenhuis, R., Stobbs, L., Wang, K., Kim, W. S., & Ferguson, G. (2008). Vectoring of pepino mosaic virus by bumble-bees in tomato greenhouses. Annals of Applied Biology, 153, 149–155.Van der Vlugt, R. A. A. (2009). Pepino mosaic virus (review). Hellenic Plant Protection Journal, 2, 47–56.Van der Vlugt, R. A. A., & Stijger, C. C. M. M. (2008). Pepino mosaic virus. In B. W. J. Mahy & M. H. V. Van Regenmortel (Eds.), Encyclopedia of virology (5th ed., pp. 103–108). Wageningen: Oxford Elsevier.Van der Vlugt, R. A. A., Stijger, C. C. M. M., Verhoeven, J. T. J., & Lesemann, D.-E. (2000). First report of Pepino mosaic virus on tomato. Plant Disease, 84, 103.Van der Vlugt, R. A. A., Cuperus, C., Vink, J., Stijger, I. C. M. M., Lesemann, D.-E., Verhoeven, J. T. J., & Roenhorst, J. W. (2002). Identification and characterization of Pepino mosaic potexvirus in tomato. Bulletin EPPO/EPPO Bulletin, 32, 503–508.Verchot-Lubicz, J., Chang-Ming, Y., & Bamunusinghe, D. (2007). Molecular biology of potexviruses: recent advances. Journal of General Virology, 88(6), 1643–1655.Verhoeven, J. T. H. J., van der Vlugt, R., & Roenhorst, J. W. (2003). High similarity between tomato isolates of pepino mosaic virus suggests a common origin. European Journal of Plant Pathology, 109, 419–425.Werkman, A.W., & Sansford, C.E. (2010). Pest risk analysis for pepino mosaic virus for the EU. Deliverable Report 4.3. EU Sixth Framework project PEPEIRA. http:// www.pepeira.com .Wright, D., & Mumford, R. (1999). Pepino mosaic potexvirus (PepMV): first records in tomato in the United Kingdom. Plant disease notice (89th ed.). York, UK: Central Science Laboratory

    Synthesis and characterization of a DNA complementary to Plum pox virus RNA to be used as a specific detection probe

    No full text
    International audienc

    New isolates of Citrus tristeza virus

    No full text

    Construction and use of a cloned cDNA probe for the detection of plum pox virus in plants

    No full text
    International audienc

    Mobile addiction e prevenzione attraverso il gruppo dei pari

    No full text
    La dipendenza da cellulare, espressione dei profondi cambiamenti economici, sociali e culturali degli ultimi decenni, sta diventando un problema sempre più diffuso, soprattutto fra gli adolescenti. L’articolo, nella prima parte si sofferma sull’analisi della letteratura relativa alla dipendenza tecnologica, in generale, e alla dipendenza da cellulare, nello specifico; nella seconda parte, presenta una ricerca-intervento che, da un lato, ha avuto l’obiettivo di esaminare la relazione tra fattori cognitivi (locus of control) e fattori emotivi (disregolazione emotiva) nei casi di abuso nell’utilizzo di telefoni cellulari; dall’altro, ha voluto avviare una riflessione circa l’influenza del gruppo sia nello stimolare il comportamento di abuso, sia nel trasformare il cellulare in strumento di coping rispetto al comportamento regolativo
    • …
    corecore