25 research outputs found

    CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome

    Get PDF
    The Cancer Immunoediting concept has provided critical insights suggesting dual functions of immune system during the cancer initiation and development. However, the dynamics and roles of CD4(+) and CD8(+) T cells in the pathogenesis of breast cancer remain unclear. Here we utilized two murine breast cancer models (4T1 and E0771) and demonstrated that both CD4(+) and CD8(+) T cells were increased and involved in immune responses, but with distinct dynamic trends in breast cancer development. In addition to cell number increases, CD4(+) T cells changed their dominant subsets from Th1 in the early stages to Treg and Th17 cells in the late stages of the cancer progression. We also analyzed CD4(+) and CD8(+) T cell infiltration in primary breast cancer tissues from cancer patients. We observed that CD8(+) T cells are the key effector cell population mediating effective anti-tumor immunity resulting in better clinical outcomes. In contrast, intra-tumoral CD4(+) T cells have negative prognostic effects on breast cancer patient outcomes. These studies indicate that CD4(+) and CD8(+) T cells have opposing roles in breast cancer progression and outcomes, which provides new insights relevant for the development of effective cancer immunotherapeutic approaches

    Histopathological changes in the human larynx following expanded polytetrafluroethylene (Gore-Tex(®)) implantation

    Get PDF
    BACKGROUND: Expanded polytetrafluroethelyne (e PTFE, Gore-Tex(®)) has been advocated as an implant material for medialization of the vocal fold. Animal studies involving rabbits and a porcine model have demonstrated host tolerance of the implant. There have been no reports describing the histological changes in a human laryngectomy specimen with a Gore-Tex implant. CASE PRESENTATION: The histological findings in a laryngectomy specimen of a patient previously implanted with e PTFE for medialization of a paralyzed vocal fold following excision of a vagal neurofibroma were studied. Histopathology revealed a mild foreign-body giant cell granulomatous reaction with some associated fibrosis. The granulomatous response was limited to the periphery of the Gore-Tex and although it closely followed the profile of the material it did not encroach into or significantly break up the material. There was no significant neutrophilic or lymphocytic inflammation. CONCLUSIONS: Our findings are consistent with the animal models confirming that Gore-Tex implantation does not result in a significant granulomatous reaction in the human larynx over a 13-month period. Moreover, there is no evidence of resorption or infection. Further, the lack of lymphocytes in association with the granulomas indicates that there is no significant immunological hypersensitivity. Histologically, the slight permeation by connective tissue is similar to that seen in Gore-Tex vascular and cardiac implants. The degree of the slight giant cell response appears to be dependent on the profile of the material; a sharp edge incited more of a response than a flat surface

    Do salivary bypass tubes lower the incidence of pharyngocutaneous fistula following total laryngectomy? A retrospective analysis of predictive factors using multivariate analysis

    Get PDF
    Salivary bypass tubes (SBT) are increasingly used to prevent pharyngocutaneous fistula (PCF) following laryngectomy and pharyngolaryngectomy. There is minimal evidence as to their efficacy and literature is limited. The aim of the study was to determine if SBT prevent PCF. The study was a multicentre retrospective case control series (level of evidence 3b). Patients who underwent laryngectomy or pharyngolaryngectomy for cancer or following cancer treatment between 2011 and 2014 were included in the study. The primary outcome was development of a PCF. Other variables recorded were age, sex, prior radiotherapy or chemoradiotherapy, prior tracheostomy, type of procedure, concurrent neck dissection, use of flap reconstruction, use of prophylactic antibiotics, the suture material used for the anastomosis, tumour T stage, histological margins, day one post-operative haemoglobin and whether a salivary bypass tube was used. Univariate and multivariate analysis were performed. A total of 199 patients were included and 24 received salivary bypass tubes. Fistula rates were 8.3% in the SBT group (2/24) and 24.6% in the control group (43/175). This was not statistically significant on univariate (p value 0.115) or multivariate analysis (p value 0.076). In addition, no other co-variables were found to be significant. No group has proven a benefit of salivary bypass tubes on multivariate analysis. The study was limited by a small case group, variations in tube duration and subjects given a tube may have been identified as high risk of fistula. Further prospective studies are warranted prior to recommendation of salivary bypass tubes following laryngectomy

    TLR8 signaling enhances tumor immunity by preventing tumor‐induced T‐cell senescence

    No full text
    Abstract Accumulating evidence suggests the immunosuppressive microenvironments created by malignant tumors represent a major obstacle for effective anti‐tumor immunity. A better understanding of the suppressive mechanisms mediated by tumor microenvironments and the development of strategies to reverse the immune suppression are major challenges for the success of tumor immunotherapy. Here, we report that human tumor cells can induce senescence in naïve/effector T cells, exhibiting potent suppressive function in vitro and in vivo. We further show that tumor‐derived endogenous cyclic adenosine monophosphate (cAMP) is responsible for the induction of T‐cell senescence. Importantly, activation of TLR8 signaling in tumor cells can block the induction and reverse the suppression of senescent naïve and tumor‐specific T cells in vitro and in vivo, resulting in enhanced anti‐tumor immunity. These studies identify a novel mechanism of human tumor‐mediated immune suppression and provide a new strategy to reverse tumor immunosuppressive effects for tumor immunotherapy

    SALL1 functions as a tumor suppressor in breast cancer by regulating cancer cell senescence and metastasis through the NuRD complex

    Get PDF
    Background: SALL1 is a multi-zinc finger transcription factor that regulates organogenesis and stem cell development, but the role of SALL1 in tumor biology and tumorigenesis remains largely unknown. Methods: We analyzed SALL1 expression levels in human and murine breast cancer cells as well as cancer tissues from different types of breast cancer patients. Using both in vitro co-culture system and in vivo breast tumor models, we investigated how SALL1 expression in breast cancer cells affects tumor cell growth and proliferation, metastasis, and cell fate. Using the gain-of function and loss-of-function strategies, we dissected the molecular mechanism responsible for SALL1 tumor suppressor functions. Results: We demonstrated that SALL1 functions as a tumor suppressor in breast cancer, which is significantly down-regulated in the basal like breast cancer and in estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) triple negative breast cancer patients. SALL1 expression in human and murine breast cancer cells inhibited cancer cell growth and proliferation, metastasis, and promoted cell cycle arrest. Knockdown of SALL1 in breast cancer cells promoted cancer cell growth, proliferation, and colony formation. Our studies revealed that tumor suppression was mediated by recruitment of the Nucleosome Remodeling and Deacetylase (NuRD) complex by SALL1, which promoted cancer cell senescence. We further demonstrated that the mechanism of inhibition of breast cancer cell growth and invasion by SALL1-NuRD depends on the p38 MAPK, ERK1/2, and mTOR signaling pathways. Conclusion: Our studies indicate that the developmental control gene SALL1 plays a critical role in tumor suppression by recruiting the NuRD complex and thereby inducing cell senescence in breast cancer cells. Electronic supplementary material The online version of this article (10.1186/s12943-018-0824-y) contains supplementary material, which is available to authorized users
    corecore