56 research outputs found

    Ataxia-telangiectasia mutated interacts with Parkin and induces mitophagy independent of kinase activity. Evidence from mantle cell lymphoma

    Get PDF
    Ataxia telangiectasia mutated (ATM), a critical DNA damage sensor with protein kinase activity,is frequently altered in human cancers including mantle cell lymphoma (MCL). Loss of ATM protein is linked to accumulation of nonfunctional mitochondria and defective mitophagy, in both murine thymocytes and in A-T cells. However, the mechanistic role of ATM kinase in cancer cell mitophagy is unknown. Here, we provide evidence that FCCP-induced mitophagy in MCL and other cancer cell lines is dependent on ATM but independent of its kinase function. While Granta-519 MCL cells possess single copy and kinase dead ATM and are resistant to FCCP-induced mitophagy, both Jeko-1 and Mino cells are ATM proficient and induce mitophagy. Stable knockdown of ATM in Jeko-1 and Mino cells conferred resistance to mitophagy and was associated with reduced ATP production, oxygen consumption, and increased mROS. ATM interacts with the E3 ubiquitin ligase Parkin in a kinase-independent manner. Knockdown of ATM in HeLa cells resulted in proteasomal degradation of GFP-Parkin which was rescued by the proteasome inhibitor, MG132 suggesting that ATM-Parkin interaction is important for Parkin stability. Neither loss of ATM kinase activity in primary B cell lymphomas nor inhibition of ATM kinase in MCL, A-T and HeLa cell lines mitigated FCCP or CCCP-induced mitophagy suggesting that ATM kinase activity is dispensable for mitophagy. Malignant B-cell lymphomas without detectable ATM, Parkin, Pink1, and Parkin-Ub ser65 phosphorylation were resistant to mitophagy, providing the first molecular evidence of ATM's role in mitophagy in MCL and other B-cell lymphomas

    Forodesine, an inhibitor of purine nucleoside phosphorylase, induces apoptosis in chronic lymphocytic leukemia cells

    No full text
    Purine nucleoside phosphorylase (PNP) deficiency in humans results in T lymphocytopenia. Forodesine, a potent inhibitor of PNP, was designed based on the transition-state structure stabilized by the enzyme. Previous studies established that forodesine in the presence of deoxyguanosine (dGuo) inhibits the proliferation of T lymphocytes. A phase 1 clinical trial of forodesine in T-cell malignancies demonstrated significant antileukemic activity with an increase in intracellular dGuo triphosphate (dGTP). High accumulation of dGTP in T cells may be dependent on the levels of deoxynucleoside kinases. Because B-cell chronic lymphocytic leukemia (B-CLL) cells have high activity of deoxycytidine kinase (dCK), we hypothesized that these lymphocytes would respond to forodesine. This postulate was tested in primary lymphocytes during in vitro investigations. Lymphocytes from 12 patients with CLL were incubated with forodesine and dGuo. These CLL cells showed a wide variation in the accumulation of intracellular dGTP without any effect on other deoxynucleotides. This was associated with DNA damage-induced p53 stabilization, phosphorylation of p53 at Ser15, and activation of p21. The dGTP accumulation was related to induction of apoptosis measured by caspase activation, changes in mitochondrial membrane potential, and PARP cleavage. Based on these data, a phase 2 clinical trial of forodesine has been initiated for CLL patients

    Hydrogen Peroxide Inducible DNA Cross-Linking Agents: Targeted Anticancer Prodrugs

    No full text
    The major concern for anticancer chemotherapeutic agents is the host toxicity. The development of anticancer prodrugs targeting the unique biochemical alterations in cancer cells is an attractive approach to achieve therapeutic activity and selectivity. We designed and synthesized a new type of nitrogen mustard prodrug that can be activated by high level of reactive oxygen species (ROS) found in cancer cells to release the active chemotherapy agent. The activation mechanism was determined by NMR analysis. The activity and selectivity of these prodrugs toward ROS was determined by measuring DNA interstrand cross-links and/or DNA alkylations. These compounds showed 60–90% inhibition toward various cancer cells, while normal lymphocytes were not affected. To the best of our knowledge, this is the first example of H<sub>2</sub>O<sub>2</sub>-activated anticancer prodrugs

    Regulation of Mcl-1 Expression in Context to Bone Marrow Stromal Microenvironment in Chronic Lymphocytic Leukemia

    Get PDF
    A growing body of evidence suggests that the resistance of CLL cells to apoptosis is partly mediated through the interactions between leukemia cells and adjacent stromal cells residing in the lymphatic tissue or bone marrow microenvironment. Mcl-1, an anti-apoptotic protein that is associated with failure to treatment is up-regulated in CLL lymphocytes after interaction with microenvironment. However, the regulation of its expression in context to microenvironment is unclear. We evaluated and compared changes in Mcl-1 in CLL B-cells in suspension culture and when co-cultured on stromal cells. The blockade of apoptosis in co-cultured CLL cells is associated with diminution in caspase-3 and PARP cleavage and is not dependent on cytogenetic profile or prognostic factors of the disease. Stroma-derived resistance to apoptosis is associated with a cascade of transcriptional events such as increase in levels of total RNA Pol II and its phosphorylation at Ser2 and Ser5, increase in the rate of global RNA synthesis, and amplification of Mcl-1 transcript levels. The latter is associated with increase in Mcl-1 protein level without an impact on the levels of Bcl-2 and Bcl-xL. Post-translational modifications of protein kinases show increased phosphorylation of Akt at Ser473, Erk at Thr202/Tyr204 and Gsk-3β at Ser9 and augmentation of total Mcl-1 accumulation along with phosphorylation at Ser159/Thr163 sites. Collectively, stroma-induced apoptosis resistance is mediated through signaling proteins that regulate transcriptional and translational expression and post-translational modification of Mcl-1 in CLL cells in context to bone marrow stromal microenvironment
    • …
    corecore