15 research outputs found

    Development of temporal auditory processing in childhood: Changes in efficiency rather than temporal-modulation selectivity

    Get PDF
    The ability to detect amplitude modulation (AM) is essential to distinguish the spectro-temporal features of speech from those of a competing masker. Previous work shows that AM sensitivity improves until 10 years of age. This may relate to the development of sensory factors (tuning of AM filters, susceptibility to AM masking) or to changes in processing efficiency (reduction in internal noise, optimization of decision strategies). To disentangle these hypotheses, three groups of children (5–11 years) and one of young adults completed psychophysical tasks measuring thresholds for detecting sinusoidal AM (with a rate of 4, 8, or 32 Hz) applied to carriers whose inherent modulations exerted different amounts of AM masking. Results showed that between 5 and 11 years, AM detection thresholds improved and that susceptibility to AM masking slightly increased. However, the effects of AM rate and carrier were not associated with age, suggesting that sensory factors are mature by 5 years. Subsequent modelling indicated that reducing internal noise by a factor 10 accounted for the observed developmental trends. Finally, children’s consonant identification thresholds in noise related to some extent to AM sensitivity. Increased efficiency in AM detection may support better use of temporal information in speech during childhood

    Temporal integration for amplitude modulation in childhood: Interaction between internal noise and memory

    Get PDF
    It is still unclear whether the gradual improvement in amplitude-modulation (AM) sensitivity typically found in children up to 10 years of age reflects an improvement in “processing efficiency” (the central ability to use information extracted by sensory mechanisms). This hypothesis was tested by evaluating temporal integration for AM, a capacity relying on memory and decision factors. This was achieved by measuring the effect of increasing the number of AM cycles (2 vs 8) on AM-detection thresholds for three groups of children aged from 5 to 11 years and a group of young adults. AM-detection thresholds were measured using a forced-choice procedure and sinusoidal AM (4 or 32 Hz rate) applied to a 1024-Hz pure-tone carrier. All age groups demonstrated temporal integration for AM at both rates; that is, significant improvements in AM sensitivity with a higher number of AM cycles. However, an effect of age is observed as both 5–6 year olds and adults exhibited more temporal integration compared to 7–8 and 10–11 year olds at both rates. This difference is due to: (i) the 5–6 year olds displaying the worst thresholds with 2 AM cycles, but similar thresholds with 8 cycles compared to the 7–8 and 10–11 year olds, and, (ii) adults showing the best thresholds with 8 AM cycles but similar thresholds with 2 cycles compared to the 7–8 and 10–11 year olds. Computational modelling indicated that higher levels of internal noise combined with poorer short-term memory capacities in children accounted for the developmental trends. Improvement in processing efficiency may therefore account for the development of AM detection in childhood

    Automated profiling of spontaneous speech in primary progressive aphasia and behavioral-variant frontotemporal dementia: An approach based on usage-frequency

    Get PDF
    Language production provides important markers of neurological health. One feature of impairments of language and cognition, such as those that occur in stroke aphasia or Alzheimer's disease, is an overuse of high frequency, “familiar” expressions. We used computerized analysis to profile narrative speech samples from speakers with variants of frontotemporal dementia (FTD), including subtypes of primary progressive aphasia (PPA). Analysis was performed on language samples from 29 speakers with semantic variant PPA (svPPA), 25 speakers with logopenic variant PPA (lvPPA), 34 speakers with non-fluent variant PPA (nfvPPA), 14 speakers with behavioral variant FTD (bvFTD) and 20 older normal controls (NCs). We used frequency and collocation strength measures to determine use of familiar words and word combinations. We also computed word counts, content word ratio and a combination ratio, a measure of the degree to which the individual produces connected language. All dementia subtypes differed significantly from NCs. The most discriminating variables were word count, combination ratio, and content word ratio, each of which distinguished at least one dementia group from NCs. All participants with PPA, but not participants with bvFTD, produced significantly more frequent forms at the level of content words, word combinations, or both. Each dementia group differed from the others on at least one variable, and language production variables correlated with established behavioral measures of disease progression. A machine learning classifier, using narrative speech variables, achieved 90% accuracy when classifying samples as NC or dementia, and 59.4% accuracy when matching samples to their diagnostic group. Automated quantification of spontaneous speech in both language-led and non-language led dementias, is feasible. It allows extraction of syndromic profiles that complement those derived from standardized tests, warranting further evaluation as candidate biomarkers. Inclusion of frequency-based language variables benefits profiling and classification

    Development of temporal auditory processing in childhood: Changes in efficiency rather than temporal-modulation selectivity

    Get PDF
    International audienceThe ability to detect amplitude modulation (AM) is essential to distinguish the spectro-temporal features of speech from those of a competing masker. Previous work shows that AM sensitivity improves until 10 years of age. This may relate to the development of sensory factors (tuning of AM filters, susceptibility to AM masking) or to changes in processing efficiency (reduction in internal noise, optimization of decision strategies). To disentangle these hypotheses, three groups of children (5-11 years) and one of young adults completed psychophysical tasks measuring thresholds for detecting sinusoidal AM (with a rate of 4, 8, or 32 Hz) applied to carriers whose inherent modulations exerted different amounts of AM masking. Results showed that between 5 and 11 years, AM detection thresholds improved and that susceptibility to AM masking slightly increased. However, the effects of AM rate and carrier were not associated with age, suggesting that sensory factors are mature by 5 years. Subsequent modelling indicated that reducing internal noise by a factor 10 accounted for the observed developmental trends. Finally, children's consonant identification thresholds in noise related to some extent to AM sensitivity. Increased efficiency in AM detection may support better use of temporal information in speech during childhood

    The “rowdy classroom problem” in children with dyslexia: A review

    No full text
    info:eu-repo/semantics/publishe
    corecore