277 research outputs found

    Entropy per particle spikes in the transition metal dichalcogenides

    Get PDF
    We derive a general expression for the entropy per particle as a function of chemical potential, temperature and gap magnitude for the single layer transition metal dichalcogenides. The electronic excitations in these materials can be approximately regarded as two species of the massive or gapped Dirac fermions. Inside the smaller gap there is a region with zero density of states where the dependence of the entropy per particle on the chemical potential exhibits a huge dip-and-peak structure. The edge of the larger gap is accompanied by the discontinuity of the density of states that results in the peak in the dependence of the entropy per particle on the chemical potential. The specificity of the transition metal dichalcogenides makes possible the observation of these features at rather high temperatures order of 100 K. The influence of the uniaxial strain on the entropy per particle is discussed.Comment: 6 pages, 4 figures; Special Issue to the 90th birthday of A.A. Abrikoso

    Spherical functions on the de Sitter group

    Full text link
    Matrix elements and spherical functions of irreducible representations of the de Sitter group are studied on the various homogeneous spaces of this group. It is shown that a universal covering of the de Sitter group gives rise to quaternion Euler angles. An explicit form of Casimir and Laplace-Beltrami operators on the homogeneous spaces is given. Different expressions of the matrix elements and spherical functions are given in terms of multiple hypergeometric functions both for finite-dimensional and unitary representations of the principal series of the de Sitter group.Comment: 40 page

    The Ferromagnetism in the Vicinity of Lifshitz Topological Transitions

    Full text link
    We show that the critical temperature of a ferromagnetic phase transition in a quasi-two-dimensional hole gas confined in a diluted magnetic semiconductor quantum well strongly depends on the hole chemical potential and hole density. The significant variations of the the Curie temperature occur close to the Lifshitz topological transition points where the hole Fermi surface acquires additional components of topological connectivity due to the filling of excited size-quantization subbands. The model calculations demonstrate that the Curie temperature can be doubled by a small variation of the gate voltage for the CdMnTe/CdMgTe quantum well based device

    Detection of topological phase transitions through entropy measurements: the case of germanene

    Full text link
    We propose a characterization tool for studies of the band structure of new materials promising for the observation of topological phase transitions. We show that a specific resonant feature in the entropy per electron dependence on the chemical potential may be considered as a fingerprint of the transition between topological and trivial insulator phases. The entropy per electron in a honeycomb two-dimensional crystal of germanene subjected to the external electric field is obtained from the first principle calculation of the density of electronic states and the Maxwell relation. We demonstrate that, in agreement to the recent prediction of the analytical model, strong spikes in the entropy per particle dependence on the chemical potential appear at low temperatures. They are observed at the values of the applied bias both below and above the critical value that corresponds to the transition between the topological insulator and trivial insulator phases, while the giant resonant feature in the vicinity of zero chemical potential is strongly suppressed at the topological transition point, in the low temperature limit. In a wide energy range, the van Hove singularities in the electronic density of states manifest themselves as zeros in the entropy per particle dependence on the chemical potential.Comment: 8 pages, 5 figures; final version published in PR

    New experimental limits on neutron - mirror neutron oscillations in the presence of mirror magnetic field

    Full text link
    Present probes do not exclude that the neutron (nn) oscillation into mirror neutron (nn'), a sterile state exactly degenerate in mass with the neutron, can be a very fast process, in fact faster than the neutron decay itself. This process is sensitive to the magnetic field. Namely, if the mirror magnetic field B\vec{B}' exists at the Earth, nnn-n' oscillation probability can be suppressed or resonantly amplified by the applied magnetic field B\vec{B}, depending on its strength and on the angle β\beta between B\vec{B} and B\vec{B}'. We present the results of ultra-cold neutron storage measurements aiming to check the anomalies observed in previous experiments which could be a signal for nnn-n' oscillation in the presence of mirror magnetic field B0.1B'\sim 0.1~G. Analyzing the experimental data on neutron loses, we obtain a new lower limit on nnn-n' oscillation time τnn>17\tau_{nn'} > 17 s (95 % C.L.) for any BB' between 0.08 and 0.17 G, and τnn/cosβ>27\tau_{nn'}/\sqrt{\cos\beta} > 27 s (95 % C.L.) for any BB' in the interval (0.06÷0.250.06\div0.25) G

    Self-consistent calculation of nuclear photoabsorption cross section: Finite amplitude method with Skyrme functionals in the three-dimensional real space

    Full text link
    The finite amplitude method (FAM), which we have recently proposed (T. Nakatsukasa, T. Inakura, and K. Yabana, Phys. Rev. C 76, 024318 (2007)), simplifies significantly the fully self-consistent RPA calculation. Employing the FAM, we are conducting systematic, fully self-consistent response calculations for a wide mass region. This paper is intended to present a computational scheme to be used in the systematic investigation and to show the performance of the FAM for a realistic Skyrme energy functional. We implemented the method in the mixed representation in which the forward and backward RPA amplitudes are represented by indices of single-particle orbitals for occupied states and the spatial grid points for unoccupied states. We solve the linear response equation for a given frequency. The equation is a linear algebraic problem with a sparse non-hermitian matrix, which is solved with an iterative method. We show results of the dipole response for selected spherical and deformed nuclei. The peak energies of the giant dipole resonance agree well with measurements for heavy nuclei, while they are systematically underestimated for light nuclei. We also discuss the width of the giant dipole resonance in the fully self-consistent RPA calculation.Comment: 11 pages, 10 figure

    UCN anomalous losses and the UCN capture cross-section on material defects

    Full text link
    Experimental data shows anomalously large Ultra Cold Neutrons (UCN) reflection losses and that the process of UCN reflection is not completely coherent. UCN anomalous losses under reflection cannot be explained in the context of neutron optics calculations. UCN losses by means of incoherent scattering on material defects are considered and cross-section values calculated. The UCN capture cross-section on material defects is enhanced by a factor of 10^4 due to localization of UCN around defects. This phenomenon can explain anomalous losses of UCN.Comment: 13 pages, 4 figure
    corecore