84 research outputs found
Lens-regulated retinoic acid signalling controls expansion of the developing eye
This research was funded by a Biotechnology and Biological Science Research Council (BBSRC) PhD studentship to H.M.W., a University of Aberdeen Institute of Medical Sciences PhD Studentship to J.N.S., and a grant from the University of Aberdeen Development Trust [OL 989 to L.E., J.M.C].Peer reviewedPublisher PD
Cell lineage transport: a mechanism for molecular gradient formation
Gradient formation is a fundamental patterning mechanism during embryo development, commonly related to secreted proteins that move along an existing field of cells. Here, we mathematically address the feasibility of gradients of mRNAs and non-secreted proteins. We show that these gradients can arise in growing tissues whereby cells dilute and transport their molecular content as they divide and grow, a mechanism we termed ‘cell lineage transport.' We provide an experimental test by unveiling a distal-to-proximal gradient of Hoxd13 in the vertebrate developing limb bud driven by cell lineage transport, corroborating our model. Our study indicates that gradients of non-secreted molecules exhibit a power-law profile and can arise for a wide range of biologically relevant parameter values. Dilution and nonlinear growth confer robustness to the spatial gradient under changes in the cell cycle period, but at the expense of sensitivity in the timing of gradient formation. We expect that gradient formation driven by cell lineage transport will provide future insights into understanding the coordination between growth and patterning during embryonic development
VGLL3 operates via TEAD1, TEAD3 and TEAD4 to influence myogenesis in skeletal muscle.
VGLL proteins are transcriptional co-factors that bind TEAD family transcription factors to regulate events ranging from wing development in fly, to muscle fibre composition and immune function in mice. Here, we characterise Vgll3 in skeletal muscle. We found that mouse Vgll3 was expressed at low levels in healthy muscle but that its levels increased during hypertrophy or regeneration; in humans, VGLL3 was highly expressed in tissues from patients with various muscle diseases, such as in dystrophic muscle and alveolar rhabdomyosarcoma. Interaction proteomics revealed that VGLL3 bound TEAD1, TEAD3 and TEAD4 in myoblasts and/or myotubes. However, there was no interaction with proteins from major regulatory systems such as the Hippo kinase cascade, unlike what is found for the TEAD co-factors YAP (encoded by YAP1) and TAZ (encoded by WWTR1). Vgll3 overexpression reduced the activity of the Hippo negative-feedback loop, affecting expression of muscle-regulating genes including Myf5, Pitx2 and Pitx3, and genes encoding certain Wnts and IGFBPs. VGLL3 mainly repressed gene expression, regulating similar genes to those regulated by YAP and TAZ. siRNA-mediated Vgll3 knockdown suppressed myoblast proliferation, whereas Vgll3 overexpression strongly promoted myogenic differentiation. However, skeletal muscle was overtly normal in Vgll3-null mice, presumably due to feedback signalling and/or redundancy. This work identifies VGLL3 as a transcriptional co-factor operating with the Hippo signal transduction network to control myogenesis
Negative Smad Expression and Regulation in the Developing Chick Limb
The inhibitory or negative Smads, Smad6 and Smad7, block TGFβ superfamily signals of both the BMP and TGFβ classes by antagonizing the intracellular signal transduction machinery. We report the cloning of one Smad6 and two Smad7 (Smad7a and Smad7b) chick homologs and their expression and regulation in the developing limb. Smad6 and Smad7a are expressed in dynamic patterns reflecting the domains of BMP gene expression in the limb. Activation and inhibition of the BMP signaling pathway in limb mesenchyme indicates that negative Smad gene expression is regulated, at least in part, by BMP family signals
Positional Information – a concept underpinning our understanding of developmental biology
© 2019 Wiley Periodicals, Inc.Peer reviewedPostprin
A Computational Clonal Analysis of the Developing Mouse Limb Bud
A comprehensive spatio-temporal description of the tissue movements underlying organogenesis would be an extremely useful resource to developmental biology. Clonal analysis and fate mappings are popular experiments to study tissue movement during morphogenesis. Such experiments allow cell populations to be labeled at an early stage of development and to follow their spatial evolution over time. However, disentangling the cumulative effects of the multiple events responsible for the expansion of the labeled cell population is not always straightforward. To overcome this problem, we develop a novel computational method that combines accurate quantification of 2D limb bud morphologies and growth modeling to analyze mouse clonal data of early limb development. Firstly, we explore various tissue movements that match experimental limb bud shape changes. Secondly, by comparing computational clones with newly generated mouse clonal data we are able to choose and characterize the tissue movement map that better matches experimental data. Our computational analysis produces for the first time a two dimensional model of limb growth based on experimental data that can be used to better characterize limb tissue movement in space and time. The model shows that the distribution and shapes of clones can be described as a combination of anisotropic growth with isotropic cell mixing, without the need for lineage compartmentalization along the AP and PD axis. Lastly, we show that this comprehensive description can be used to reassess spatio-temporal gene regulations taking tissue movement into account and to investigate PD patterning hypothesis
A Balance of BMP and Notch Activity Regulates Neurogenesis and Olfactory Nerve Formation
Although the function of the adult olfactory system has been thoroughly studied, the molecular mechanisms regulating the initial formation of the olfactory nerve, the first cranial nerve, remain poorly defined. Here, we provide evidence that both modulated Notch and bone morphogenetic protein (BMP) signaling affect the generation of neurons in the olfactory epithelium and reduce the number of migratory neurons, so called epithelioid cells. We show that this reduction of epithelial and migratory neurons is followed by a subsequent failure or complete absence of olfactory nerve formation. These data provide new insights into the early generation of neurons in the olfactory epithelium and the initial formation of the olfactory nerve tract. Our results present a novel mechanism in which BMP signals negatively affect Notch activity in a dominant manner in the olfactory epithelium, thereby regulating neurogenesis and explain why a balance of BMP and Notch activity is critical for the generation of neurons and proper development of the olfactory nerve
Robo2-Slit1 dependent cell-cell interactions mediate assembly of the trigeminal ganglion
Vertebrate cranial sensory ganglia, responsible for sensation of touch, taste and pain in the face and viscera, are composed of both ectodermal placode and neural crest cells. The cellular and molecular interactions allowing generation of complex ganglia remain unknown. Here, we show that proper formation of the trigeminal ganglion, the largest of the cranial ganglia, relies on reciprocal interactions between placode and neural crest cells in chick, as removal of either population resulted in severe defects. We demonstrate that ingressing placode cells express the Robo2 receptor and early migrating cranial neural crest cells express its cognate ligand Slit1. Perturbation of this receptor-ligand interaction by blocking Robo2 function or depleting either Robo2 or Slit1 using RNA interference disrupted proper ganglion formation. The resultant disorganization mimics the effects of neural crest ablation. Thus, our data reveal a novel and essential role for Robo2-Slit1 signaling in mediating neural crest–placode interactions during trigeminal gangliogenesis
Bare Bones Pattern Formation: A Core Regulatory Network in Varying Geometries Reproduces Major Features of Vertebrate Limb Development and Evolution
BACKGROUND: Major unresolved questions regarding vertebrate limb development concern how the numbers of skeletal elements along the proximodistal (P-D) and anteroposterior (A-P) axes are determined and how the shape of a growing limb affects skeletal element formation. There is currently no generally accepted model for these patterning processes, but recent work on cartilage development (chondrogenesis) indicates that precartilage tissue self-organizes into nodular patterns by cell-molecular circuitry with local auto-activating and lateral inhibitory (LALI) properties. This process is played out in the developing limb in the context of a gradient of fibroblast growth factor (FGF) emanating from the apical ectodermal ridge (AER). RESULTS: We have simulated the behavior of the core chondrogenic mechanism of the developing limb in the presence of an FGF gradient using a novel computational environment that permits simulation of LALI systems in domains of varying shape and size. The model predicts the normal proximodistal pattern of skeletogenesis as well as distal truncations resulting from AER removal. Modifications of the model's parameters corresponding to plausible effects of Hox proteins and formins, and of the reshaping of the model limb, bud yielded simulated phenotypes resembling mutational and experimental variants of the limb. Hypothetical developmental scenarios reproduce skeletal morphologies with features of fossil limbs. CONCLUSIONS: The limb chondrogenic regulatory system operating in the presence of a gradient has an inherent, robust propensity to form limb-like skeletal structures. The bare bones framework can accommodate ancillary gene regulatory networks controlling limb bud shaping and establishment of Hox expression domains. This mechanism accounts for major features of the normal limb pattern and, under variant geometries and different parameter values, those of experimentally manipulated, genetically aberrant and evolutionary early forms, with no requirement for an independent system of positional information
Growth Based Morphogenesis of Vertebrate Limb Bud
Many genes and their regulatory relationships are involved in developmental phenomena. However, by chemical information alone, we cannot fully understand changing organ morphologies through tissue growth because deformation and growth of the organ are essentially mechanical processes. Here, we develop a mathematical model to describe the change of organ morphologies through cell proliferation. Our basic idea is that the proper specification of localized volume source (e.g., cell proliferation) is able to guide organ morphogenesis, and that the specification is given by chemical gradients. We call this idea “growth-based morphogenesis.” We find that this morphogenetic mechanism works if the tissue is elastic for small deformation and plastic for large deformation. To illustrate our concept, we study the development of vertebrate limb buds, in which a limb bud protrudes from a flat lateral plate and extends distally in a self-organized manner. We show how the proportion of limb bud shape depends on different parameters and also show the conditions needed for normal morphogenesis, which can explain abnormal morphology of some mutants. We believe that the ideas shown in the present paper are useful for the morphogenesis of other organs
- …