286 research outputs found

    Reference materials and representative test materials to develop nanoparticle characterization methods: the NanoChOp project case

    Get PDF
    This paper describes the production and characteristics of the nanoparticle test materials prepared for common use in the collaborative research project NanoChOp (Chemical and optical characterization of nanomaterials in biological systems), in casu suspensions of silica nanoparticles and CdSe/CdS/ZnS quantum dots (QDs). This paper is the first to illustrate how to assess whether nanoparticle test materials meet the requirements of a "reference material" (ISO Guide 30, 2015) or rather those of the recently defined category of "representative test material (RTM)" (ISO/TS 16195, 2013). The NanoChOp test materials were investigated with small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and centrifugal liquid sedimentation (CLS) to establish whether they complied with the required monomodal particle size distribution. The presence of impurities, aggregates, agglomerates, and viable microorganisms in the suspensions was investigated with DLS, CLS, optical and electron microscopy and via plating on nutrient agar. Suitability of surface functionalization was investigated with attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and via the capacity of the nanoparticles to be fluorescently labeled or to bind antibodies. Between-unit homogeneity and stability were investigated in terms of particle size and zeta potential. This paper shows that only based on the outcome of a detailed characterization process one can raise the status of a test material to RTM or reference material, and how this status depends on its intended use

    Cardiac miRNA Expression and their mRNA Targets in a Rat Model of Prediabetes

    Get PDF
    Little is known about the mechanism of prediabetes-induced cardiac dysfunction. Therefore, we aimed to explore key molecular changes with transcriptomic and bioinformatics approaches in a prediabetes model showing heart failure with preserved ejection fraction phenotype. To induce prediabetes, Long-Evans rats were fed a high-fat diet for 21 weeks and treated with a single low-dose streptozotocin at week 4. Small RNA-sequencing, in silico microRNA (miRNA)-mRNA target prediction, Gene Ontology analysis, and target validation with qRT-PCR were performed in left ventricle samples. From the miRBase-annotated 752 mature miRNA sequences expression of 356 miRNAs was detectable. We identified two upregulated and three downregulated miRNAs in the prediabetic group. We predicted 445 mRNA targets of the five differentially expressed miRNAs and selected 11 mRNAs targeted by three differentially expressed miRNAs, out of which five mRNAs were selected for validation. Out of these five targets, downregulation of three mRNAs i.e., Juxtaposed with another zinc finger protein 1 (Jazf1); RAP2C, member of RAS oncogene family (Rap2c); and Zinc finger with KRAB and SCAN domains 1 (Zkscan1) were validated. This is the first demonstration that prediabetes alters cardiac miRNA expression profile. Predicted targets of differentially expressed miRNAs include Jazf1, Zkscan1, and Rap2c mRNAs. These transcriptomic changes may contribute to the diastolic dysfunction and may serve as drug targets

    A comparison of techniques for size measurement of nanoparticles in cell culture medium

    Get PDF
    Plain and aminated silica nanoparticles dispersed in purified water, in 50 mM Tris-HCl buffer and in cell culture medium were measured using dynamic light scattering (DLS), centrifugal liquid sedimentation (CLS), small-angle X-ray scattering (SAXS), and particle tracking analysis (PTA). The test samples were measured by all methods immediately after dispersion and after incubation at room temperature for 24 h. The effect of the biological dispersion medium on the modal value of the particle size distribution was compared for each method taking into account the estimated uncertainty. For the methods based on light scattering, DLS and PTA, the size distributions obtained were significantly altered due to the formation of a protein corona and induced agglomeration effects. With SAXS and CLS, the measured size of the primary particles was mostly unchanged. While SAXS offers excellent precision and traceability to the SI unit system if the model fitting approach is used for data analysis, CLS provides detailed size distributions from which additional information on the agglomeration state can be deduced

    Chronic treatment with rofecoxib but not ischemic preconditioning of the myocardium ameliorates early intestinal damage following cardiac ischemia/reperfusion injury in rats

    Get PDF
    There is some recent evidence that cardiac ischemia/reperfusion (I/R) injury induces intestinal damage within days, which contributes to adverse cardiovascular outcomes after myocardial infarction. However, it is not clear whether remote gut injury has any detectable early signs, and whether different interventions aiming to reduce cardiac damage are also effective at protecting the intestine. Previously, we found that chronic treatment with rofecoxib, a selective inhibitor of cyclooxygenase-2 (COX-2), limited myocardial infarct size to a comparable extent as cardiac ischemic preconditioning (IPC) in rats subjected to 30-min coronary artery occlusion and 120-min reperfusion. In the present study, we aimed to analyse the early intestinal alterations caused by cardiac I/R injury, with or without the above-mentioned infart size-limiting interventions. We found that cardiac I/R injury induced histological changes in the small intestine within 2 h, which were accompanied by elevated tissue level of COX-2 and showed positive correlation with the activity of matrix metalloproteinase-2 (MMP-2), but not of MMP-9 in the plasma. All these changes were prevented by rofecoxib treatment. By contrast, cardiac IPC failed to reduce intestinal injury and plasma MMP-2 activity, although it prevented the transient reduction in jejunal blood flow in response to cardiac I/R. Our results demonstrate for the first time that rapid development of intestinal damage follows cardiac I/R, and that two similarly effective infarct size-limiting interventions, rofecoxib treatment and cardiac IPC, have different impacts on cardiac I/R-induced gut injury. Furthermore, intestinal damage correlates with plasma MMP-2 activity, which may be a biomarker for its early diagnosis

    Characterization of the CDAA Diet-Induced Non-alcoholic Steatohepatitis Model: Sex-Specific Differences in Inflammation, Fibrosis, and Cholesterol Metabolism in Middle-Aged Mice

    Get PDF
    Background: The prevalence of non-alcoholic steatohepatitis (NASH) rapidly increases with associated metabolic disorders such as dyslipidemia; therefore, NASH is now considered an independent risk factor of cardiovascular diseases. NASH displays sex-linked epidemiological, phenotypical, and molecular differences; however, little is known about the background of these sex-specific differences on the molecular level. Objectives: We aimed to assess sex-specific differences in the expression of inflammatory and fibrotic genes, as well as in cholesterol metabolism, focusing on the expression of Pcsk9 in several tissues in a mouse model of NASH that shows the typical features of the human condition. Methods and results: We fed 10-months-old male and female C57Bl/6J mice with a NASH-inducing CDAA or corresponding control diet for 8 weeks. We found that, compared to the control male mice baseline, hepatic Pcsk9 expression as well as serum PCSK9 level was significantly higher in females, and both circulating PCSK9 level and the hepatic Pcsk9 gene were markedly decreased in female mice during NASH development. Histological analysis revealed that male and female mice develop a similar degree of steatosis; however, fibrosis was more pronounced in males upon CDAA diet feeding. Strikingly, female mice have higher hepatic expression of the pro-inflammatory cytokines (Il1b, Ifng), and increased IL-1β cleavage by the NLRP3 inflammasome, and a decrease in Clec4f+ resident Kupffer cell population in comparison to males in the CDAA-fed groups. Conclusion: This is the first demonstration that there are critical sex-specific differences during NASH development in middle-aged mice regarding inflammation, fibrosis, and cholesterol metabolism and that changes in PCSK9 and IL-1β are likely important contributors to sex-specific changes during the transition to NASH
    corecore