65 research outputs found
Elevated Expression of AXL May Contribute to the Epithelial-to- Mesenchymal Transition in Inflammatory Bowel Disease Patients
Understanding the molecular mechanisms inducing and regulating epithelial-to-mesenchymal transition (EMT) upon chronic intestinal inflammation is critical for understanding the exact pathomechanism of inflammatory bowel disease (IBD). The aim of this study was to determine the expression profile of TAM family receptors in an inflamed colon. For this, we used a rat model of experimental colitis and also collected samples from colons of IBD patients. Samples were taken from both inflamed and uninflamed regions of the same colon; the total RNA was isolated, and the mRNA and microRNA expressions were monitored. We have determined that AXL is highly induced in active-inflamed colon, which is accompanied with reduced expression of AXL-regulating microRNAs. In addition, the expression of genes responsible for inducing or maintaining mesenchymal phenotype, such as SNAI1, ZEB2, VIM, MMP9, and HIF1α, were all significantly induced in the active-inflamed colon of IBD patients while the epithelial marker E-cadherin (CDH1) was downregulated. We also show that, in vitro, monocytic and colonic epithelial cells increase the expression of AXL in response to LPS or TNFα stimuli, respectively. In summary, we identified several interacting genes and microRNAs with mutually exclusive expression pattern in active-inflamed colon of IBD patients. Our results shed light onto a possible AXL- and microRNA-mediated regulation influencing epithelial-to-mesenchymal transition in IBD
Transcriptome Based Profiling of the Immune Cell Gene Signature in Rat Experimental Colitis and Human IBD Tissue Samples
Chronic intestinal inflammation is characteristic of Inflammatory Bowel Disease (IBD) that is associated with the exaggerated infiltration of immune cells. A complex interplay of inflammatory mediators and different cell types in the colon are responsible for the maintenance of tissue homeostasis and affect pathological conditions. Gene expression alteration of colon biopsies from IBD patients and an in vivo rat model of colitis were examined by RNA-Seq and QPCR, while we used in silico methods, such as Ingenuity Pathway Analysis (IPA) application and the Immune Gene Signature (ImSig) package of R, to interpret whole transcriptome data and estimate immune cell composition of colon tissues. Transcriptome profiling of in vivo colitis model revealed the most significant activation of signaling pathways responsible for leukocyte recruitment and diapedesis. We observed significant alteration of genes related to glycosylation or sensing of danger signals and pro- and anti-inflammatory cytokines and chemokines, as well as adhesion molecules. We observed the elevated expression of genes that implies the accumulation of monocytes, macrophages, neutrophils and B cells in the inflamed colon tissue. In contrast, the rate of T-cells slightly decreased in the inflamed regions. Interestingly, natural killer and plasma cells do not show enrichment upon colon inflammation. In general, whole transcriptome analysis of the in vivo experimental model of colitis with subsequent bioinformatics analysis provided a better understanding of the dynamic changes in the colon tissue of IBD patients
Hypoalbuminemia affects one third of acute pancreatitis patients and is independently associated with severity and mortality
The incidence and medical costs of acute pancreatitis (AP) are on the rise, and severe cases still have a 30% mortality rate. We aimed to evaluate hypoalbuminemia as a risk factor and the prognostic value of human serum albumin in AP. Data from 2461 patients were extracted from the international, prospective, multicentre AP registry operated by the Hungarian Pancreatic Study Group. Data from patients with albumin measurement in the first 48 h (n = 1149) and anytime during hospitalization (n = 1272) were analysed. Multivariate binary logistic regression and Receiver Operator Characteristic curve analysis were used. The prevalence of hypoalbuminemia (< 35 g/L) was 19% on admission and 35.7% during hospitalization. Hypoalbuminemia dose-dependently increased the risk of severity, mortality, local complications and organ failure and is associated with longer hospital stay. The predictive value of hypoalbuminemia on admission was poor for severity and mortality. Severe hypoalbuminemia (< 25 g/L) represented an independent risk factor for severity (OR 48.761; CI 25.276-98.908) and mortality (OR 16.83; CI 8.32-35.13). Albumin loss during AP was strongly associated with severity (p < 0.001) and mortality (p = 0.002). Hypoalbuminemia represents an independent risk factor for severity and mortality in AP, and it shows a dose-dependent relationship with local complications, organ failure and length of stay.Peer reviewe
- …