20 research outputs found

    UV-Light-Tunable p-/n-Type Chemiresistive Gas Sensors Based on Quasi-1D TiS\u3csub\u3e3\u3c/sub\u3e Nanoribbons: Detection of Isopropanol at ppm Concentrations

    Get PDF
    The growing demand of society for gas sensors for energy-efficient environmental sensing stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium trisulfide (TiS3) crystals for possible applications in chemiresistors and on-chip multisensor arrays. TiS3 nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive gas sensors. These sensors were exposed to isopropanol as a model analyte, which was mixed with air at low concentrations of 1–100 ppm that are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit. The tests were performed at room temperature (RT), as well as with heating up to 110 oC, and under an ultraviolet (UV) radiation at λ = 345 nm. We found that the RT/UV conditions result in a n-type chemiresistive response to isopropanol, which seems to be governed by its redox reactions with chemisorbed oxygen species. In contrast, the RT conditions without a UV exposure produced a p-type response that is possibly caused by the enhancement of the electron transport scattering due to the analyte adsorption. By analyzing the vector signal from the entire on-chip multisensor array, we could distinguish isopropanol from benzene, both of which produced similar responses on individual sensors. We found that the heating up to 110 oC reduces both the sensitivity and selectivity of the sensor array

    UV-Light-Tunable p-/n-Type Chemiresistive Gas Sensors Based on Quasi-1D TiS3 Nanoribbons: Detection of Isopropanol at ppm Concentrations

    Get PDF
    The growing demand of society for gas sensors for energy-efficient environmental sensing stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium trisulfide (TiS(3)) crystals for possible applications in chemiresistors and on-chip multisensor arrays. TiS(3) nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive gas sensors. These sensors were exposed to isopropanol as a model analyte, which was mixed with air at low concentrations of 1–100 ppm that are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit. The tests were performed at room temperature (RT), as well as with heating up to 110 °C, and under an ultraviolet (UV) radiation at λ = 345 nm. We found that the RT/UV conditions result in a n-type chemiresistive response to isopropanol, which seems to be governed by its redox reactions with chemisorbed oxygen species. In contrast, the RT conditions without a UV exposure produced a p-type response that is possibly caused by the enhancement of the electron transport scattering due to the analyte adsorption. By analyzing the vector signal from the entire on-chip multisensor array, we could distinguish isopropanol from benzene, both of which produced similar responses on individual sensors. We found that the heating up to 110 °C reduces both the sensitivity and selectivity of the sensor array

    Toward new gas-analytical multisensor chips based on titanium oxide nanotube array

    Get PDF
    Reliable environmental monitoring requires cost effective but highly sensitive and selective gas sensors. While the sensitivity of the sensors is improved by reducing the characteristic dimensions of the gas-sensing material, the selectivity is often approached by combining the sensors into multisensor arrays. The development of scalable methods to manufacture such arrays based on low-dimensional structures offers new perspectives for gas sensing applications. Here we examine an approach to produce multisensor array chips based on the TiOx_{x} nanotube layers segmented by multiple Pt strip electrodes. We study the sensitivity and selectivity of the developed chip at operating temperatures up to 400 °C towards organic vapors in the ppm range. The results indicate that the titania nanotubes are a promising material platform for novel cost-effective and powerful gas-analytical multisensor units

    The UV Effect on the Chemiresistive Response of ZnO Nanostructures to Isopropanol and Benzene at PPM Concentrations in Mixture with Dry and Wet Air

    Get PDF
    Towards the development of low-power miniature gas detectors, there is a high interest in the research of light-activated metal oxide gas sensors capable to operate at room temperature (RT). Herein, we study ZnO nanostructures grown by the electrochemical deposition method over Si/SiO2_{2} substrates equipped by multiple Pt electrodes to serve as on-chip gas monitors and thoroughly estimate its chemiresistive performance upon exposing to two model VOCs, isopropanol and benzene, in a wide operating temperature range, from RT to 350 °C, and LED-powered UV illumination, 380 nm wavelength; the dry air and humid-enriched, 50 rel. %, air are employed as a background. We show that the UV activation allows one to get a distinctive chemiresistive signal of the ZnO sensor to isopropanol at RT regardless of the interfering presence of H2_{2}O vapors. On the contrary, the benzene vapors do not react with UV-illuminated ZnO at RT under dry air while the humidity’s appearance gives an opportunity to detect this gas. Still, both VOCs are well detected by the ZnO sensor under heating at a 200–350 °C range independently on additional UV exciting. We employ quantum chemical calculations to explain the differences between these two VOCs’ interactions with ZnO surface by a remarkable distinction of the binding energies characterizing single molecules, which is −0.44 eV in the case of isopropanol and −3.67 eV in the case of benzene. The full covering of a ZnO supercell by H2_{2}O molecules taken for the effect’s estimation shifts the binding energies to −0.50 eV and −0.72 eV, respectively. This theory insight supports the experimental observation that benzene could not react with ZnO surface at RT under employed LED UV without humidity’s presence, indifference to isopropanol

    2D Molybdenum Carbide MXenes for Enhanced Selective Detection of Humidity in Air

    Get PDF
    2D transition metal carbides and nitrides (MXenes) open up novel opportunities in gas sensing with high sensitivity at room temperature. Herein, 2D Mo2CTx flakes with high aspect ratio are successfully synthesized. The chemiresistive effect in a sub-mu m MXene multilayer for different organic vapors and humidity at 10(1)-10(4) ppm in dry air is studied. Reasonably, the low-noise resistance signal allows the detection of H2O down to 10 ppm. Moreover, humidity suppresses the response of Mo2CTx to organic analytes due to the blocking of adsorption active sites. By measuring the impedance of MXene layers as a function of ac frequency in the 10(-2)-10(6) Hz range, it is shown that operation principle of the sensor is dominated by resistance change rather than capacitance variations. The sensor transfer function allows to conclude that the Mo2CTx chemiresistance is mainly originating from electron transport through interflake potential barriers with heights up to 0.2 eV. Density functional theory calculations, elucidating the Mo2C surface interaction with organic analytes and H2O, explain the experimental data as an energy shift of the density of states under the analyte's adsorption which induces increasing electrical resistance

    Highly selective gas sensor arrays based on thermally reduced graphene oxide

    Get PDF
    The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation

    Toward a Selective Analysis of Heavy Metal Salts in Aqueous Media with a Fluorescent Probe Array

    No full text
    Detection of heavy meals in aqueous media challenges worldwide research in developing particularly fast and affordable methods. Fluorescent sensors look to be an appropriate instrument for such a task, as recently they have been found to have made large progress in the detection of chemical analytes, primarily in the environment, along with biological fluids, which still suffer from not enough selectivity. In this work, we propose a new fluorescent method to selectively recognize heavy metals in an aqueous solution via employing an array of several fluorescent probes: acridine yellow, eosin, and methylene blue, which were taken as examples, being sensitive to a microsurrounding of the probe molecules. The exemplary sensor array generated six channels of spectral information through the use of various combinations of excitation and detection wavelengths. Following the known multisensor approach, we applied a linear discriminant analysis to selectively distinguish the vector signals from the sensor array from salts of heavy metals—Cu, Pb, Zn, Cd, and Cz—at the concentration ranges of 2.41 × 10−6–1.07 × 10−5 M, 2.8 × 10−5–5.87 × 10−4 M, 1.46 × 10−6–6.46 × 10−6 M, 1.17 × 10−8–5.2 × 10−8 M, and 2.11 × 10−6–9.33 × 10−6 M, respectively. The suggested approach was found to be promising due to it employing only one cuvette containing the test solution, simplifying a sample preparation when compared to preparing a variety of solutions in tests with single fluorescence probes

    The Potentiodynamic Bottom-up Growth of the Tin Oxide Nanostructured Layer for Gas-Analytical Multisensor Array Chips

    No full text
    We report a deposition of the tin oxide/hydroxide nanostructured layer by the potentiodynamic method from acidic nitrate solutions directly over the substrate, equipped with multiple strip electrodes which is employed as a gas-analytical multisensor array chip. The electrochemical synthesis is set to favor the growth of the tin oxide/hydroxide phase, while the appearance of metallic Sn is suppressed by cycling. The as-synthesized tin oxide/hydroxide layer is characterized by mesoporous morphology with grains, 250–300 nm diameter, which are further crystallized into fine SnO2 poly-nanocrystals following heating to 300 °C for 24 h just on the chip. The fabricated layer exhibits chemiresistive properties under exposure to organic vapors, which allows the generation of a multisensor vector signal capable of selectively distinguishing various vapors

    UV-Light-Tunable p-/n-Type Chemiresistive Gas Sensors Based on Quasi-1D TiS3 Nanoribbons: Detection of Isopropanol at ppm Concentrations

    No full text
    The growing demand of society for gas sensors for energy-efficient environmental sensing stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium trisulfide (TiS3) crystals for possible applications in chemiresistors and on-chip multisensor arrays. TiS3 nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive gas sensors. These sensors were exposed to isopropanol as a model analyte, which was mixed with air at low concentrations of 1–100 ppm that are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit. The tests were performed at room temperature (RT), as well as with heating up to 110 °C, and under an ultraviolet (UV) radiation at λ = 345 nm. We found that the RT/UV conditions result in a n-type chemiresistive response to isopropanol, which seems to be governed by its redox reactions with chemisorbed oxygen species. In contrast, the RT conditions without a UV exposure produced a p-type response that is possibly caused by the enhancement of the electron transport scattering due to the analyte adsorption. By analyzing the vector signal from the entire on-chip multisensor array, we could distinguish isopropanol from benzene, both of which produced similar responses on individual sensors. We found that the heating up to 110 °C reduces both the sensitivity and selectivity of the sensor array
    corecore