392 research outputs found

    Determination of aqueous inclusion complexation constants and stoichiometry of alkyl(methyl)-methylimidazolium-based ionic liquid cations and neutral cyclodextrins by affinity capillary electrophoresis

    Get PDF
    Affinity CE (ACE) method was developed to characterize the complex formation between seven alkyl(methyl)methylimidazolium-based ionic liquid (IL) cations and eight neutral cyclodextrins (CD). The effective mobility data of the IL cations were processed according to classical nonlinear and linear treatments to obtain the complex stoichiometry and formation constant K. The majority of systems followed a 1:1 complexation stoichiometry model but in four cases a 1:2 stoichiometry was better satisfied. The K values obtained for each IL were compared to elucidate the main influences of IL and CD nature. The availability of these data should lend support to various application areas, including the screening and tailoring of new interactions in the solution for CE

    Stellar pollution and [Fe/H] in the Hyades

    Get PDF
    The Hyades open cluster presents a unique laboratory for planet formation and stellar pollution studies because all of the stars have essentially the same age and were born from the same cloud of gas. Furthermore, with an age of roughly 650 Myr most of the intermediate and low mass stars are on the main sequence. Given these assumptions, the accretion of metal rich material onto the surface of a star during and shortly after the formation of planetary systems should be evident via the enhanced metallicity of the star. Building on previous work, stellar evolution models which include the effects of stellar pollution are applied to the Hyades. The results of several Monte Carlo simulations, in which the amount of accreted material is drawn at random from a Gaussian distribution with standard deviation equal to half the mean, are presented. An effective temperature-[Fe/H] relation is produced and compared to recent observations. The theoretical predictions presented in this letter will be useful in future searches for evidence of stellar pollution due to planet formation. It is concluded that stellar pollution effects at the mean level of >=2 Earth masses of iron are ruled out by current observational data.Comment: 10 pages, 3 figures, AASTeX, accepted to the ApJ

    Characterization of nanomedicines’ surface coverage using molecular probes and capillary electrophoresis

    Get PDF
    International audienceA faithful characterization of nanomedicine (NM) is needed for a better understanding of their in vivo outcomes. Size and surface charge are studied with well-established methods. However, other relevant parameters for the understanding of NM behavior in vivo remain largely inaccessible. For instance, the reactive surface of nanomedicines, which are often grafted with macromolecules to decrease their recognition by the immune system, is excluded from a systematic characterization. Yet, it is known that a subtle modification of NMs' surface characteristics (grafting density, molecular architecture and conformation of macromolecules) is at the root of major changes in the presence of biological components. In this work, a method that investigates the steric hindrance properties of the NMs’ surface coverage based on its capacity to exclude or allow adsorption of well-defined proteins was developed based on capillary electrophoresis. A series of proteins with different molecular weights (MW) were used as molecular probes to screen their adsorption behavior on nanoparticles bearing different molecular architectures at their surface. This novel strategy evaluating to some degree a functionality of NMs can bring additional information about their shell property and might allow for a better perception of their behavior in the presence of biological components. The developed method could discriminate nanoparticles with a high surface coverage excluding high MW proteins from nanoparticles with a low surface coverage that allowed high MW proteins to adsorb on their surface. The method has the potential for further standardization and automation for a routine use. It can be applied in quality control of NMs and to investigate interactions between proteins and NM in different situations

    Determining the Physical Properties of the B Stars I. Methodology and First Results

    Full text link
    We describe a new approach to fitting the UV-to-optical spectra of B stars to model atmospheres and present initial results. Using a sample of lightly reddened stars, we demonstrate that the Kurucz model atmospheres can produce excellent fits to either combined low dispersion IUE and optical photometry or HST FOS spectrophotometry, as long as the following conditions are fulfilled: 1) an extended grid of Kurucz models is employed, 2) the IUE NEWSIPS data are placed on the FOS absolute flux system using the Massa & Fitzpatrick (1999) transformation, and 3) all of the model parameters and the effects of interstellar extinction are solved for simultaneously. When these steps are taken, the temperatures, gravities, abundances and microturbulence velocities of lightly reddened B0-A0 V stars are determined to high precision. We also demonstrate that the same procedure can be used to fit the energy distributions of stars which are reddened by any UV extinction curve which can be expressed by the Fitzpatrick & Massa (1990) parameterization scheme. We present an initial set of results and verify our approach through comparisons with angular diameter measurements and the parameters derived for an eclipsing B star binary. We demonstrate that the metallicity derived from the ATLAS 9 fits to main sequence B stars is essentially the Fe abundance. We find that a near zero microturbulence velocity provides the best-fit to all but the hottest or most luminous stars (where it may become a surrogate for atmospheric expansion), and that the use of white dwarfs to calibrate UV spectrophotometry is valid.Comment: 17 pages, including 2 pages of Tables and 6 pages of Figures. Astrophysical Jounral, in pres

    Beam dynamics studies in SPIRAL II LINAC

    Get PDF
    ACCInternational audienceThe proposed LINAG driver for the SPIRAL 2 project aims to accelerate a 5-mA D+ beam up to 20 A.MeV and 1-mA beam for q/A=1/3 up to 14.5 A.MeV. It is acontinuous wave regime (cw), designed for maximum efficiency in the transmission of intense beams. It consists of an injector (two ECR sources + a Radio Frequency Quadrupole) followed by a superconducting section based on an array of independently phased cavities. This paper presents beams dynamics studies associated to the LINAG driver. End-to-end simulations (low-energy beam lines, RFQ, medium-energy beam line, SC linac) are shown

    Spectroscopy of Blue Stragglers and Turnoff Stars in M67 (NGC 2682)

    Full text link
    We have analyzed high-resolution spectra of relatively cool blue stragglers and main sequence turnoff stars in the old open cluster M67 (NGC 2682). We attempt to identify blue stragglers whose spectra are least contaminated by binary effects (contamination by a binary companion or absorption by circumstellar material). These ``best'' stragglers have metallicities ([Fe/H] = -0.05) and abundance ratios of the blue stragglers are not significantly different from those of the turnoff stars. Based on arguments from hydrodynamical models of stellar collisions, we assert that the current upper limits for the lithium abundances of all blue stragglers observed in M67 (by us and others) are consistent with no mixing during the formation process, assuming pre-main sequence and main sequence depletion patterns observed for M67 main sequence stars. We discuss composition signatures that could more definitively distinguish between blue straggler formation mechanisms in open cluster stars. We confirm the spectroscopic detection of a binary companion to the straggler S 1082. From our spectra, we measure a projected rotational speed of 90+/-20 km/sec for the secondary, and find that its radial velocity varies with a peak-to-peak amplitude of ~ 25 km/sec. Because the radial velocities do not vary with a period corresponding to the partial eclipses in the system, we believe this system is currently undergoing mass transfer. In addition we present evidence that S 984 is a true blue straggler (and not an unresolved pair). If this can be proven, our detection of lithium may indicate a collisional origin.Comment: 20 pages, 4 figures, to appear in October 2000 A
    • …
    corecore