6 research outputs found

    A system dynamics model to predict the human monocyte response to endotoxins

    Full text link
    System dynamics is a powerful tool that allows modeling of complex and highly networked systems such as those found in the human immune system. We have developed a model that reproduces how the exposure of human monocytes to lipopolysaccharides (LPSs) induces an inflammatory state characterized by high production of tumor necrosis factor alpha (TNFα), which is rapidly modulated to enter into a tolerant state, known as endotoxin tolerance (ET). The model contains two subsystems with a total of six states, seven flows, two auxiliary variables, and 14 parameters that interact through six differential and nine algebraic equations. The parameters were estimated and optimized to obtain a model that fits the experimental data obtained from human monocytes treated with various LPS doses. In contrast to publications on other animal models, stimulation of human monocytes with super-low-dose LPSs did not alter the response to a second LPSs challenge, neither inducing ET, nor enhancing the inflammatory response. Moreover, the model confirms the low production of TNFα and increased levels of C-C motif ligand 2 when monocytes exhibit a tolerant state similar to that of patients with sepsis. At present, the model can help us better understand the ET response and might offer new insights on sepsis diagnostics and prognosis by examining the monocyte response to endotoxins in patients with sepsisThis work was supported by grants from the “Instituto de Salud Carlos III” (ISCiii), “Fondo de Investigación Sanitaria” (FIS), and Fondos FEDER (PI14/01234, PIE15/00065) to EL-C. EA work contract is supported by the Torres Quevedo program from “Ministerio de Economía y Competitividad” (SPTQ1300X006175XV0). VT work contract is supported by the “Ministerio de Economía y Competitividad” (PTA2013-8265-I

    Galactomannan Downregulates the Inflammation Responses in Human Macrophages via NFκB2/p100

    Get PDF
    We show that galactomannan, a polysaccharide consisting of a mannose backbone with galactose side groups present on the cell wall of several fungi, induces a reprogramming of the inflammatory response in human macrophages through dectin-1 receptor. The nuclear factor kappa-light-chain-enhancer of activated B cells 2 (NFκB2)/p100 was overexpressed after galactomannan challenge. Knocking down NFκB2/p100 using small interfering RNA (siRNA) indicated that NFκB2/p100 expression is a crucial factor in the progression of the galactomannan-induced refractoriness. The data presented in this study could be used as a modulator of inflammatory response in clinical situations where refractory state is required

    A System Dynamics Model to Predict the Human Monocyte Response to Endotoxins

    No full text
    System dynamics is a powerful tool that allows modeling of complex and highly networked systems such as those found in the human immune system. We have developed a model that reproduces how the exposure of human monocytes to lipopolysaccharides (LPSs) induces an inflammatory state characterized by high production of tumor necrosis factor alpha (TNFα), which is rapidly modulated to enter into a tolerant state, known as endotoxin tolerance (ET). The model contains two subsystems with a total of six states, seven flows, two auxiliary variables, and 14 parameters that interact through six differential and nine algebraic equations. The parameters were estimated and optimized to obtain a model that fits the experimental data obtained from human monocytes treated with various LPS doses. In contrast to publications on other animal models, stimulation of human monocytes with super-low-dose LPSs did not alter the response to a second LPSs challenge, neither inducing ET, nor enhancing the inflammatory response. Moreover, the model confirms the low production of TNFα and increased levels of C–C motif ligand 2 when monocytes exhibit a tolerant state similar to that of patients with sepsis. At present, the model can help us better understand the ET response and might offer new insights on sepsis diagnostics and prognosis by examining the monocyte response to endotoxins in patients with sepsis

    PD-L1/PD-1 crosstalk in colorectal cancer: are we targeting the right cells?

    No full text
    Abstract Background The analysis of tumour-infiltrating immune cells within patients’ tumour samples in colorectal cancer (CRC) has become an independent predictor of patient survival. The tumour microenvironment and the immune checkpoints, such as PD-L1/PD-1, are relevant to the prognoses and also appear to be relevant for further CRC therapies. Methods We analysed the presence and features of the infiltrated monocyte/macrophage and lymphocyte populations in both tumour and peritumour samples from patients with CRC (n = 15). Results We detected a large number of CD14+ monocytes/macrophages with an alternative phenotype (CD64+CD163+) and CD4+ lymphocytes that infiltrated the tumour, but not the peritumour area. The monocytes/macrophages expressed PD-L1, whereas the lymphocytes were PD-1+; however, we did not find high PD-L1 levels in the tumour cells. Coculture of circulating naïve human monocytes/macrophages and lymphocytes with tumour cells from patients with proficient mismatch repair CRC induced both an alternative phenotype with higher expression of PD-L1 in CD14+ cells and the T-cell exhaustion phenomenon. The addition of an α-PD-1 antibody restored lymphocyte proliferation. Conclusion These results emphasise the interesting nature of immune checkpoint shifting therapies, which have potential clinical applications in the context of colorectal cancer
    corecore