12,293 research outputs found

    A new clinical tool for assessing numerical abilities in neurological diseases: numerical activities of daily living

    Get PDF
    The aim of this study was to build an instrument, the numerical activities of daily living (NADL), designed to identify the specific impairments in numerical functions that may cause problems in everyday life. These impairments go beyond what can be inferred from the available scales evaluating activities of daily living in general, and are not adequately captured by measures of the general deterioration of cognitive functions as assessed by standard clinical instruments like the MMSE and MoCA. We assessed a control group (n = 148) and a patient group affected by a wide variety of neurological conditions (n = 175), with NADL along with IADL, MMSE, and MoCA. The NADL battery was found to have satisfactory construct validity and reliability, across a wide age range. This enabled us to calculate appropriate criteria for impairment that took into account age and education. It was found that neurological patients tended to overestimate their abilities as compared to the judgment made by their caregivers, assessed with objective tests of numerical abilities

    Hydrological and erosion response at micro-plot to -catchment scale following forest wildfire, north-central Portugal

    Get PDF
    Wildfires can have important impacts on hydrological and soil erosion processes, due to the destruction of vegetation cover and changes to soil properties. According to Shakesby and Doerr (2006), these wildfire effects are: i) much better known at small spatial scales (especially erosion plots) than at the scale of catchments; ii) much better studied with respect to overland flow and streamflow (and, then, especially peak discharges) than to soil erosion. Following up on a precursor project studying runoff generation and the associated soil losses from micro-plot to slope-scale in Portuguese eucalypt forests, the EROSFIRE-II project addresses the connectivity of these processes across hillslopes as well as within the channel network. This is done in the Colmeal study area in central Portugal, where the outlet of an entirely burnt catchment of roughly 10 ha was instrumented with a gauging station continuously recording water level and tubidity, and five slopes were each equipped with 4 runoff plots of < 0,5 m2 (“micro-plot”) and 4 slope-scale plots as well as 1 slope-scale sediment fence. Starting one month after the August 2008 wildfire, the plots were monitored at 1- to 2-weekly intervals, depending on the occurrence of rainfall. The gauging station became operational at the end of November 2008, since the in-situ construction of an H-flume required several weeks. A preliminary analysis of the data collected till the end of 2008, focusing on two slopes with contrasting slope lengths as well as the gauging station: revealed clear differences in runoff and erosion between: (i) the micro-plot and slope-scale plots on the same hillslope; (ii) the two slopes; (iii) an initial dry period and a subsequent much wetter period; (iv) the slopes and the catchment-scale, also depending on the sampling period. These results suggest that the different processes govern the hydrological and erosion response at different spatial scales as well as for different periods, with soil water repellency playing a role during the initial post-fire period. The current presentation will review these preliminary results based on the data collected during the first year after the wildfire

    Fases termodinámicamente estables en el sistema cerrado CaO-SiO2-Al2O3-CaSO4-H2O a 25 ºC. Aplicación a sistemas cementantes

    Get PDF
    One of the chief causes of cement and concrete deterioration is the loss of durability prompted by sulphate attack. The existing standards call for long test periods (2- 12 months). Thermodynamic modelling is a particularly appropriate technique for studying systems that only reach equilibrium in the long term. Used in the present study to establish the fields of thermodynamic stability for the phases in the CaO-SiO2-Al2O3-CaSO4-H2O system at 25 ºC. According to the model, gypsum is stable at sulphate ion concentrations of 1.23e-2 mol/kg and over, while ettringite exhibits stability at concentrations ranging from 7.64e-6 to 1.54e-2 mol/kg. Ettringite is compatible with all system phases except SH and gypsum only with ettringite, the C-S-H gels, AH3 and SH. None of the calcium aluminates or silicoaluminates in the system is compatible with gypsum: in its presence, they all decompose to cement deteriorating ettringite. Finally, the model revealed that the maximum sulphate concentration at which C-S-H gel is stable is slightly higher in systems with than without Al2O3.Uno de los principales problemas asociados al deterioro de cementos y hormigones es la pérdida de durabilidad por ataque de sulfatos. La normativa existente requiere largos tiempos de ensayo (2-12 meses). La modelización termodinámica es una técnica particularmente adecuada para el estudio de sistemas que alcanzan el equilibrio en tiempos largos. Aplicando esta metodología se han establecido los campos de estabilidad termodinámica de las fases del sistema CaO-SiO2-Al2O3-CaSO4-H2O a 25 ºC. El yeso es estable a partir de la [SO42-] = 1,23e-2 mol/kg, y la ettringita es estable en un rango de [SO42-] = 7,64e-6 -1,54e-2 mol/kg. La ettringita es compatible con todas las fases del sistema excepto con SH y el yeso sólo con la ettringita, los geles C-S-H, el AH3 y el SH. Ninguno de los aluminatos o silicoaluminatos cálcicos son compatibles con el yeso, en su presencia se descomponen dando etringita. Finalmente, la máxima [SO42-] en la que es estable el gel C-S-H es ligeramente superior en sistemas que contienen Al2O3 con respecto a los que no lo poseen

    Runoff at the micro-plot and slope scale following wildfire, central Portugal

    Get PDF
    Through their effects on soil properties and vegetation/litter cover, wildfires can strongly enhance overland flow generation and accelerate soil erosion [1] and, thereby, negatively affect land-use sustainability as well as downstream aquatic and flood zones. Wildfires are a common phenomenon in present-day Portugal, devastating in an average year some 100.000 ha of forest and woodlands and in an exceptional year like 2003 over 400.000 ha. There therefore exists a clear need in Portugal for a tool that can provide guidance to post-fire land management by predicting soil erosion risk, on the one hand, and, on the other, the mitigation effectiveness of soil conservation measures. Such a tool has recently been developed for the Western U.S.A. [3: ERMiT] but its suitability for Portuguese forests will need to be corroborated by field observations. Testing the suitability of existing erosion models in recently burned forest areas in Portugal is, in a nutshell, the aim of the EROSFIRE projects. In the first EROSFIRE project the emphasis was on the prediction of erosion at the scale of individual hill slopes. In the ongoing EROSFIRE-II project the spatial scope is extended to include the catchment scale, so that also the connectivity between hill slopes as well as channel and road processes are being addressed. Besides ERMiT, the principal models under evaluation for slope-scale erosion prediction are: (i) the variant of USLE [4] applied by the Portuguese Water Institute after the wildfires of 2003; (ii) the Morgan–Morgan–Finney model (MMF) [5]; (iii) MEFIDIS [6]. From these models, MEFIDIS and perhaps MMF will, after successful calibration at the slope scale, also be applied for predicting catchment-scale sediment yields of extreme events

    Effects of epitaxial strain on the growth mechanism of YBa2Cu3O7-x thin films in [YBa2Cu3O7-x / PrBa2Cu3O7-x] superlattices

    Get PDF
    We report on the growth mechanism of YBa2Cu3O7-x (YBCO). Our study is based on the analysis of ultrathin, YBa2Cu3O7-x layers in c-axis oriented YBa2Cu3O7-x / PrBa2Cu3O7-x superlattices. We have found that the release of epitaxial strain in very thin YBCO layers triggers a change in the dimensionality of the growth mode. Ultrathin, epitaxially strained, YBCO layers with thickness below 3 unit cells grow in a block by block two dimensional mode coherent over large lateral distances. Meanwhile, when thickness increases, and the strain relaxes, layer growth turns into three dimensional, resulting in rougher layers and interfaces.Comment: 10 pages + 9 figures, accepted in Phys. Rev.

    Runoff and erosion at the micro-plot and slope scale in a small burnt catchment, central Portugal

    Get PDF
    Wildfires can have important impacts on hydrological processes and soil erosion in forest catchments, due to the destruction of vegetation cover and changes to soil properties. However, the processes involved are non-linear and not fully understood. This has severely limited the understanding on the impacts of wildfires, especially in the up-scaling from hillslopes to catchments; in consequence, current models are poorly adapted for burnt forest conditions. The objective of this presentation is to give an overview of the hydrological response and sediment yield from the micro-plot to slope scale, in the first year following a wildfire (2008/2009) that burnt an entire catchment nearby the Colmeal village, central Portugal. The overview will focus on three slopes inside the catchment, with samples including: • Runoff at micro-plot scale (12 bounded plots) and slope scale (12 open plots); • Sediments and Organic Matter loss at micro-plot scale (12 bounded plots) and slope scale (12 open plots plus 3 Sediment fences); • Rainfall and Soil moisture data; • Soil Water Repellency and Ground Cover data. The analysis of the first year following the wildfire clearly shows the complexity of runoff generation and the associated sediment transport in recently burnt areas, with pronounced differences between hillslopes and across spatial scales as well as with marked variations through time. This work was performed in the framework of the EROSFIRE-II project (PTDC/AGR-CFL/70968/2006) which has as overall aim to predict soil erosion risk in recently burnt forest areas, including common post-fire forest management practices; the project focuses on the simultaneous measurement of runoff and soil erosion at multiple spatial scales.The results to be presented in this session are expected to show how sediment is generated, transported and exported in the Colmeal watershed; and contribute to understand and simulate erosion processes in burnt catchments, including for model development and evaluation
    corecore