1,066 research outputs found

    Control over stress induces plasticity of individual prefrontal cortical neurons: A conductance-based neural simulation

    Get PDF
    Behavioral control over stressful stimuli induces resilience to future conditions when control is lacking. The medial prefrontal cortex(mPFC) is a critically important brain region required for plasticity of stress resilience. We found that control over stress induces plasticity of the intrinsic voltage-gated conductances of pyramidal neurons in the PFC. To gain insight into the underlying biophysical mechanisms of this plasticity we used the conductance- based neural simulation software tool, NEURON, to model the increase in membrane excitability associated with resilience to stress. A ball and stick multicompartment conductance-based model was used to realistically fit passive and active data traces from prototypical pyramidal neurons in neurons in rats with control over tail shock stress and those lacking control. The results indicate that the plasticity of membrane excitability associated with control over stress can be attributed to an increase in Na+ and Ca2+ T-type conductances and an increase in the leak conductance. Using simulated dendritic synaptic inputs we observed an increase in excitatory postsynaptic summation and amplification resulting in elevated action potential output. This realistic simulation suggests that control over stress enhances the output of the PFC and offers specific testable hypotheses to guide future electrophysiological mechanistic studies in animal models of resilience and vulnerability to stress

    Analysis of Alfven eigenmode destabilization by energetic particles in Large Helical Device using a Landau-closure model

    Get PDF
    Energetic particle populations in nuclear fusion experiments can destabilize the Alfven Eigenmodes through inverse Landau damping and couplings with gap modes in the shear Alfven continua. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles. We add the Landau damping and resonant destabilization effects using a closure relation. We apply the model to study the Alfven mode stability in the inward-shifted configurations of the Large Helical Device (LHD), performing a parametric analysis of the energetic particle beta(beta(f)) in a range of realistic values, the ratios of the energetic particle thermal/Alfven velocities (V-th/V-A0), the magnetic Lundquist numbers (S) and the toroidal modes (n). The n = 1 and n = 2 TAEs are destabilized, although the n = 3 and n = 4 TAEs are weakly perturbed. The most unstable configurations are associated with the density gradients of energetic particles in the plasma core: the TAEs are destabilized, even for small energetic particle populations, if their thermal velocity is lower than 0.4 times the Alfven velocity. The frequency range of MHD bursts measured in the LHD are 50-70 kHz for the n = 1 and 60-80 kHz for the n = 2 TAE, which is consistent with the model predictions.This material is based on work supported both by the U.S. Department of Energy and the Office of Science, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. The research was sponsored in part by the Ministerio de Economia y Competitividad of Spain under project no. ENE2015-68265-P. We also want to acknowledge the LHD group at NIFS for providing us with the VMEC equilibria, and useful interactions with Y. Todo and M. Osakabe

    Analysis of Alfven eigenmode destabilization in ITER using a Landau closure model

    Get PDF
    Alfvén eigenmodes (AE) can be destabilized during ITER discharges driven by neutral beam injection (NBI) energetic particles (EP) and alpha particles. The aim of the present study is to analyze the AE stability of different ITER operation scenarios considering multiple energetic particle species. We use the reduced magneto-hydrodynamic (MHD) equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the EP species including the effect of the acoustic modes. The AEs driven by the NBI EP and alpha particles are stable in the configurations analyzed, only MHD-like modes with large toroidal couplings are unstable, although both can be destabilized if the EP increases above a threshold. The threshold is two times the model value for the NBI EP and alpha particles in the reverse shear (RS) case, leading to the destabilization of Beta induced AE (BAE) near the magnetic axis with a frequency of kHz and toroidal or elliptical AE (TAE/EAE) in the RS region with a frequency of kHz, respectively. On the other hand, the hybrid and steady state configurations show a threshold 3 times larger with respect to the model for the alpha particle and 40 times for the NBI EP, also destabilizing BAE and TAE between the inner and middle plasma region. In addition, a extended analysis of the RS scenario where the of both alpha particles and NBI EP are above the AE threshold, multiple EP damping effects are also identified as well as optimization trends regarding the resonance properties of the alpha particle and NBI EP with the bulk plasma.This material based on work is partially supported both by the U.S. Department of Energy, Office of Science, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC and U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Award No. DE-FC02-04ER54698. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. This research was sponsored in part by the Ministerio of Economia y Competitividad of Spain under project no. ENE2015-68265-P. The authors would like to thanks Y. Todo for fruitful discussions

    Spatial and temporal segregation of auditory and vestibular neurons in the otic placode

    Get PDF
    This is an article Open Access.The otic placode generates the auditory and vestibular sense organs and their afferent neurons; however, how auditory and vestibular fates are specified is unknown. We have generated a fate map of the otic placode and show that precursors for vestibular and auditory cells are regionally segregated in the otic epithelium. The anterior-lateral portion of the otic placode generates vestibular neurons, whereas the posterior-medial region gives rise to auditory neurons. Precursors for vestibular and auditory sense organs show the same distribution. Thus, different regions of the otic placode correspond to particular sense organs and their innervating neurons. Neurons from contiguous domains rarely intermingle suggesting that the regional organisation of the otic placode dictates positional cues to otic neurons. But, in addition, vestibular and cochlear neurogenesis also follows a stereotyped temporal pattern. Precursors from the anterior-lateral otic placode delaminate earlier than those from its medial-posterior portion. The expression of the proneural genes NeuroM and NeuroD reflects the sequence of neuroblast formation and differentiation. Both genes are transiently expressed in vestibular and then in cochlear neuroblasts, while differentiated neurons express Islet1, Tuj1 and TrkC, but not NeuroM or NeuroD. Together, our results indicate that the position of precursors within the otic placode confers identity to sensory organs and to the corresponding otic neurons. In addition, positional information is integrated with temporal cues that coordinate neurogenesis and sensory differentiation. © 2008 Elsevier Inc. All rights reserved.This work was funded by grants from the Guy's and St Thomas' Charitable Foundation and the BBSRC to AS, BMC2002-00355 CICYT to BA, BFU2005-0084-CICYT and CSIC to IVN, and XT-G03/203 ISCIII MSC to IVN and FG. IG was supported by a predoctoral fellowship from the Eusko Jaularitza.Peer Reviewe

    Spatial and temporal segregation of auditory and vestibular neurons in the otic placode

    Get PDF
    AbstractThe otic placode generates the auditory and vestibular sense organs and their afferent neurons; however, how auditory and vestibular fates are specified is unknown. We have generated a fate map of the otic placode and show that precursors for vestibular and auditory cells are regionally segregated in the otic epithelium. The anterior-lateral portion of the otic placode generates vestibular neurons, whereas the posterior-medial region gives rise to auditory neurons. Precursors for vestibular and auditory sense organs show the same distribution. Thus, different regions of the otic placode correspond to particular sense organs and their innervating neurons. Neurons from contiguous domains rarely intermingle suggesting that the regional organisation of the otic placode dictates positional cues to otic neurons. But, in addition, vestibular and cochlear neurogenesis also follows a stereotyped temporal pattern. Precursors from the anterior-lateral otic placode delaminate earlier than those from its medial-posterior portion. The expression of the proneural genes NeuroM and NeuroD reflects the sequence of neuroblast formation and differentiation. Both genes are transiently expressed in vestibular and then in cochlear neuroblasts, while differentiated neurons express Islet1, Tuj1 and TrkC, but not NeuroM or NeuroD. Together, our results indicate that the position of precursors within the otic placode confers identity to sensory organs and to the corresponding otic neurons. In addition, positional information is integrated with temporal cues that coordinate neurogenesis and sensory differentiation

    Analysis of the MHD stability and energetic particles effects on EIC events in LHD plasma using a Landau-closure model

    Get PDF
    The aim of this study is to perform a theoretical analysis of the magnetohydrodynamic (MHD) stability and energetic particle effects on a LHD equilibria, calculated during a discharge where energetic-ion-driven resistive interchange mode (EIC) events were triggered. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles species, including the effect of the acoustic modes, multiple energetic particles (EP) species, helical couplings and helically trapped EP. We add the Landau damping and resonant destabilization effects using a closure relation. The simulations suggest that the helically trapped EP driven by the perpendicular neutral beam injector (NBI) further destabilizes the 1/1 MHD-like mode located at the plasma periphery (r/a  =  0.88). If the ÎČ of the EP driven by the perpendicular NBI is larger than 0.0025 a 1/1 EIC with a frequency around 3 kHz is destabilized. If the effect of the passing EP driven by the tangential NBI is included on the model, any enhancement of the injection intensity of the tangential NBI below ÎČ = 0.025 leads to a decrease of the instability growth rate. The simulations indicate that the perpendicular NBI EP is the main driver of the EIC events, as it was observed in the experiment. If the effect of the helical couplings are added in the model, an 11/13 EIC is destabilized with a frequency around 9 kHz, inward shifted (r/a  =  0.81) compared to the 1/1 EIC. Thus, one possible explanation for the EIC frequency chirping down from 9 to 3 kHz is a transition between the 11/13 to the 1/1 EIC due to a weakening of the destabilizing effect of the high n modes, caused by a decrease of the EP drive due to a loss of helically trapped EP or a change in the EP distribution function after the EIC burst. The experimental data during the EIC bursting phase shows a complex mode structure and an inward shift of the instability, although no direct evidence of the proposed transition has been observed yet

    Study of Alfvén eigenmode stability in Quasi-Poloidal Stellarator (QPS) plasma using a Landau closure model

    Get PDF
    The aim of this study is to analyze the linear stability of AlfvĂ©n eigenmodes (AE) in the QPS device heated by a tangential neutral beam injector (NBI). The analysis is performed using the gyro-fluid code FAR3d, that solves the reduced MHD equations for the thermal plasma coupled with moments of the kinetic equation for the energetic particles (EP). The AE stability is calculated in several operational regimes of the tangential NBI: EP ÎČ between 0.001 and 0.1, EP energy between 12 and 180 keV and different radial locations of the beam. The analysis is performed for vacuum and finite ÎČ equilibria as well as QPS configurations with two and three periods. The EP ÎČ threshold in the vacuum case is 0.001 and the AE frequency is lower as the energy of the EP population decreases. Toroidal AlfvĂ©n eigenmodes with f = 80–120 kHz and elliptical AE between f = 120–350 kHz are triggered between the middle-outer plasma region (r/a > 0.5). The AE stability improves in the simulations with finite ÎČ equilibria and three period configurations with respect to the vacuum case with two periods because the continuum gaps are slender, leading to a higher threshold of the EP ÎČ, above 0.03 for the AEs triggered by the helical mode families. Helical effects are not strong enough to destabilize Helical AlfvĂ©n eigenmodes, the AEs with the largest growth rates are triggered by the n=1 and n=2 toroidal families.This work was supported by NIFS07KLPH004 and the Project 2019-T1/AMB-13648 founded by the Comunidad de Madrid.Publicad

    MHD stability of JT-60SA operation scenarios driven by passing energetic particles for a hot Maxwellian model

    Get PDF
    We analyze the effects of the passing energetic particles on the resistive ballooning modes (RBM) and the energetic particle driven modes in JT-60SA plasma, which leads to the prediction of the stability in N-NBI heated plasma. The analysis is performed using the code FAR3d that solves the reduced MHD equations describing the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particle (EP) species assuming an averaged Maxwellian EP distribution fitted to the slowing down distribution, including the effect of the acoustic modes. The simulations show the possible destabilization of a 3/2−4/23/2-4/2 TAE with a frequency (f) of 115 kHz, a 6/4−7/46/4-7/4 TAE with f = 98 kHz and a 6/4 or 7/4 BAE with f = 57 kHz in the ITER-like inductive scenario. If the energetic particle ÎČ increases, beta induced Alfven Eigenmodes (BAE), toroidal AEs (TAE) and elliptical AEs (EAE) are destabilized between the inner-middle plasma region, leading to the overlapping of AE of different toroidal families. If these instabilities coexist in the non-linear saturation phase the EP transport could be enhanced leading to a lower heating efficiency. For a hypothetical configuration based on the ITER-like inductive scenario but an center peaked EP profile, the EP ÎČ threshold increases and several BAEs are destabilized in the inner plasma region, indicating an improved AE stability with respect to the off-axis peaked EP profile. In addition, the analysis of a hypothetical JT-60SA scenario with a resonant q = 1 in the inner plasma region shows the destabilization of fishbones-like instabilities by the off-axis peaked EP profile. Also, the EPs have a stabilizing effect on the RBM, stronger as the population of EP with low energies (below 250 keV) increases at the plasma pedestal

    Empathy, engagement, entrainment: the interaction dynamics of aesthetic experience

    Get PDF
    A recent version of the view that aesthetic experience is based in empathy as inner imitation explains aesthetic experience as the automatic simulation of actions, emotions, and bodily sensations depicted in an artwork by motor neurons in the brain. Criticizing the simulation theory for committing to an erroneous concept of empathy and failing to distinguish regular from aesthetic experiences of art, I advance an alternative, dynamic approach and claim that aesthetic experience is enacted and skillful, based in the recognition of others’ experiences as distinct from one’s own. In combining insights from mainly psychology, phenomenology, and cognitive science, the dynamic approach aims to explain the emergence of aesthetic experience in terms of the reciprocal interaction between viewer and artwork. I argue that aesthetic experience emerges by participatory sense-making and revolves around movement as a means for creating meaning. While entrainment merely plays a preparatory part in this, aesthetic engagement constitutes the phenomenological side of coupling to an artwork and provides the context for exploration, and eventually for moving, seeing, and feeling with art. I submit that aesthetic experience emerges from bodily and emotional engagement with works of art via the complementary processes of the perception–action and motion–emotion loops. The former involves the embodied visual exploration of an artwork in physical space, and progressively structures and organizes visual experience by way of perceptual feedback from body movements made in response to the artwork. The latter concerns the movement qualities and shapes of implicit and explicit bodily responses to an artwork that cue emotion and thereby modulate over-all affect and attitude. The two processes cause the viewer to bodily and emotionally move with and be moved by individual works of art, and consequently to recognize another psychological orientation than her own, which explains how art can cause feelings of insight or awe and disclose aspects of life that are unfamiliar or novel to the viewer
    • 

    corecore