42 research outputs found

    Taxanes enhance trastuzumab-mediated ADCC on tumor cells through NKG2D-mediated NK cell recognition

    Get PDF
    Recent clinical data indicate a synergistic therapeutic effect between trastuzumab and taxanes in neoadjuvantly treated HER2-positive breast cancer (BC) patients. In HER2+ BC experimental models and patients, we investigated whether this synergy depends on the ability of drug-induced stress to improve NK cell effectiveness and thus trastuzumab-mediated ADCC. HER2+ BC cell lines BT474 and MDAMB361 treated with docetaxel showed up-modulation of NK activator ligands both in vitro and in vivo, accompanied by a 15-40% increase in in vitro trastuzumab-mediated ADCC; antibodies blocking the NKG2D receptor significantly reduced this enhancement. NKG2D receptor expression was increased by docetaxel treatment in circulating and splenic NK cells from mice xenografted with tumor cells, an increase related to expansion of the CD11b+Ly6G+ cell population. Accordingly, NK cells derived from HER2+ BC patients after treatment with taxane-containing therapy expressed higher levels of NKG2D receptor than before treatment. Moreover, plasma obtained from these patients recapitulated the modulation of NKG2D on healthy donors' NK cells, improving their trastuzumab-mediated activity in vitro. This enhancement occurred mainly using plasma from patients with low NKG2D basal expression. Our results indicate that taxanes increase tumor susceptibility to ADCC by acting on tumor and NK cells, and suggest that taxanes concomitantly administered with trastuzumab could maximize the antibody effect, especially in patients with low basal immune effector cytotoxic activit

    Studio dell'infezione da HTLV-2: tropismo cellulare del virus in soggetti coinfettati con HIV-1, e suo ruolo nella suscettibilita' alla apoptosi fas-mediata

    No full text
    Dottorato di ricerca in fisiopatologia, clinica e diagnostica delle infezioni nell'ospite immunocompresso e della sindrome da immunodeficienza acquisita. 12. ciclo. Coordinatore Mauro Moroni. Docente guida Gianguglielmo ZehenderConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Studio dell'infezione da HTLV-2: tropismo cellulare del virus in soggetti coinfettati con HIV-1 e suo ruolo nella suscettibilita' alla apoptosi fas-mediata

    No full text
    Dottorato di ricerca in fisiopatologia, clinica e diagnostica delle infezioni nell'ospite immunocompresso e della sinfrome da immunodeficienza acquisita. 12. ciclo. Docente guida Gianguglielmo Zehender. Coordinatore Mauro MoroniConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - Piazza Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    TLRs: Innate Immune Sentries against SARS-CoV-2 Infection

    No full text
    Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been responsible for a devastating pandemic since March 2020. Toll-like receptors (TLRs), crucial components in the initiation of innate immune responses to different pathogens, trigger the downstream production of pro-inflammatory cytokines, interferons, and other mediators. It has been demonstrated that they contribute to the dysregulated immune response observed in patients with severe COVID-19. TLR2, TLR3, TLR4 and TLR7 have been associated with COVID-19 severity. Here, we review the role of TLRs in the etiology and pathogenesis of COVID-19, including TLR7 and TLR3 rare variants, the L412F polymorphism in TLR3 that negatively regulates anti-SARS-CoV-2 immune responses, the TLR3-related cellular senescence, the interaction of TLR2 and TLR4 with SARS-CoV-2 proteins and implication of TLR2 in NET formation by SARS-CoV-2. The activation of TLRs contributes to viral clearance and disease resolution. However, TLRs may represent a double-edged sword which may elicit dysregulated immune signaling, leading to the production of proinflammatory mediators, resulting in severe disease. TLR-dependent excessive inflammation and TLR-dependent antiviral response may tip the balance towards the former or the latter, altering the equilibrium that drives the severity of disease

    Altered natural killer cell cytokine profile in type 2 autoimmune hepatitis

    No full text
    Type 2 autoimmune hepatitis (AIH-2) is a rare disease presenting in early childhood. The immunopathogenetic mechanisms are poorly characterized, although a defect of regulatory T cells (Treg) has been shown. There is virtually no information on innate immune responses and natural killer (NK) cells in particular. We have performed an extended immunophenotypic and functional analysis of NK cells in children with AIH-2. We show that NK cell frequency is reduced in this setting and that the balance between NK activating and inhibitory receptors is skewed toward activation. More importantly, NK cells display an altered cytokine pattern characterized by increased IFNγ and reduced IL2 production which could contribute to impaired Treg function. Exposure of mononuclear cells to IL2 resulted in normalization of NK IFNγ production. Thus, our findings support treatment of AIH-2 with low-dose IL2, which would result in normalization of NK cell function and expansion of the Treg cell subset

    Hepatitis C virus-induced NK cell activation causes metzincin-mediated CD16 cleavage and impaired antibody-dependent cytotoxicity

    No full text
    Background & Aims: The Fc receptor family for immunoglobulin (Ig)G type III (FcγRIII, CD16) is an activating receptor on natural killer (NK) cells and an essential mediator of antibody-dependent cellular cytotoxicity (ADCC). There is only limited information on its role during chronic hepatitis C virus (HCV) infection. We studied CD16 expression in relation to NK cell functional activity in HCV-infected patients and sought mechanistic insights into virus-induced modulation. Methods: NK cell CD16 expression and activation status were evaluated ex vivo by flow cytometry in HCV-infected patients and healthy controls (HC) as well as in vitro after co-culture with HCV-infected HuH7.5 cells. Rituximab-mediated ADCC was assessed in HC and HCV-infected patients using Daudi cells as a target. The role of metzincins in CD16 down-modulation was assessed using specific inhibitory molecules and by evaluating intracellular mRNA levels. Results: HCV-infected patients exhibited increased frequencies of ex vivo activated NK cells and a concomitantly decreased NK CD16 expression, which resulted in impaired ADCC activity. Moreover, exposure of NK cells to culture-derived HCV recapitulated the ex vivo findings of decreased CD16 expression and increased NK cell activation. Importantly, blockade of metzincin-mediated shedding activity, including selective a disintegrin and metalloproteinase 17 (ADAM-17) inhibition, restored NK CD16 expression. Successful treatment with direct-acting antivirals partially improved NK ADCC function despite delayed CD16 reconstitution. Conclusion: Chronic HCV infection induces NK cell activation resulting in ADAM-17-dependent CD16 shedding and consequent impaired ADCC function. Altered ADCC may contribute to failure to eradicate HCV-infected hepatocytes. Lay summary: We show here that hepatitis C virus (HCV) activates natural killer (NK) lymphocytes which, as a consequence, loose their Fc receptor for IgG (CD16), an essential molecule for antibody binding. We show that this occurs through the action of enzymes named metzincins, resulting in altered NK-mediated antibody-dependent killing (ADCC) of target cells. This mechanism may contribute to HCV persistence and may represent a general phenomenon whereby some viruses can escape host's immune responses

    Impaired intratumoral natural killer cell function in head and neck carcinoma

    No full text
    Natural killer (NK) cells are emerging as unique players in the immune response against cancer; however, only limited data are available on tumor infiltrating NK cells in head and neck squamous cell carcinoma (HNSCC), one of the most common cancer. Occurrence of HNSCC is closely related to the immune microenvironment, and immunotherapy is increasingly being applied to this setting. However, the limited success of this type of treatment in this tumor calls for further investigation in the field.Surgical HNSSC specimens of 32 consecutive patients were mechanically and enzymatically dissociated. Tumor cells were separated from infiltrating cells by short centrifugation and infiltrating NK cells were phenotypically and functionally characterized by multiple antibody staining and flow cytometry. Tumor infiltrating NK cells in HNSCC showed a peculiar phenotype predominantly characterized by increased NKG2A and reduced Siglec-7, NKG2D, NKp30 and CD16 expression. This phenotype was associated with a decreased ability to perform antibody-dependent cellular cytotoxicity (ADCC). However, NK, CD4 and CD8 shared an increment of glucocorticoid-induced tumor necrosis factor-related (GITR) costimulatory receptor which could be exploited for immunotherapy with agonistic anti-GITR antibodies combined with checkpoint inhibitors
    corecore