10 research outputs found

    The influenza virus neuraminidase inhibitor produced by Staphylococcus aureus

    No full text
    The glycoproteinic complex has been isolated from the Staphylococcus aureus culture fluid possessing an activity inhibiting influenza virus neuraminidase. Two fractions have been further purified containing different monosugars components, the first one has been shown to contain mannose, glucose, rhamnose, glucosamine, and galactosamine, while rhamnose is absent in the second fraction, A component of fraction 1 inhibits the neuraminidase activity and at the same time enhances the virus hemagglutinating activity more strongly comparing to the fraction 2. Some chemical modifications of the substances of the fractions studied (periodate oxidation, protease pretreatment, and delipidization) prove the carbohydrate component of the complex to be responsible for its antineuraminidase activity. The protease pretreatment decreases twice the antineuraminidase activity of the fraction 2 having no influence on this activity of the fraction 1.Π— ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ сСрСдовища золотистого стафілокока (S. aureus) Π²ΠΈΠ΄Ρ–Π»Π΅Π½ΠΎ Π³Π»Ρ–ΠΊΠΎΠ»Ρ–ΠΏΠΎΠΏΡ€ΠΎΡ‚Π΅Ρ—Π½ΠΎΠ²ΠΈΠΉ комплСкс Π· Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŽ, Ρ‰ΠΎ Π³Π°Π»ΡŒΠΌΡƒΡ” Π½Π΅ΠΉ Ρ€Π°ΠΌΡ–Π½Ρ–Π΄Π°Π·Ρƒ вірусу Π³Ρ€ΠΈΠΏΡƒ. ΠžΡ‡ΠΈΡ‰Π΅Π½ΠΎ Π΄Π²Ρ– Ρ„Ρ€Π°ΠΊΡ†Ρ–Ρ— Π· Ρ€Ρ–Π·Π½ΠΈΠΌ вмістом моносахаридів. Показано, Ρ‰ΠΎ фракція Π† ΠΌΡ–ΡΒ­Ρ‚ΠΈΡ‚ΡŒ ΠΌΠ°Π½ΠΎΠ·Ρƒ, Π³Π»ΡŽΠΊΠΎΠ·Ρƒ, Ρ€Π°ΠΌΠ½ΠΎΠ·Ρƒ, Π³Π»ΡŽΠΊΠΎΠ·Π°ΠΌΡ–Π½ Ρ‚Π° Π³Π°Π»Π°ΠΊΡ‚ΠΎΠ·Π°ΠΌΡ–Π½; Π΄Ρ€ΡƒΠ³Π° – всі Ρ†Ρ– моносахариди, ΠΊΡ€Ρ–ΠΌ Ρ€Π°ΠΌΠ½ΠΎΠ·ΠΈ. Π Π΅Ρ‡ΠΎΠ²ΠΈΠ½Π° Π· Ρ„Ρ€Π°ΠΊΡ†Ρ–Ρ— 1 Π³Π°Π»ΡŒΠΌΡƒΡ” Π½Π΅ΠΉΡ€Π°ΠΌΡ–Π½Ρ–Π΄Π°Π·Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ‚Π° одночасно ΠΏΠΎΡΠΈΠ»ΡŽΡ” Π³Π΅ΠΌΠ°Π³Π»ΡŽΡ‚ΠΈΠ½Π°Ρ‚ΠΈΠ²Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ вірусу Π·Π½Π°Ρ‡Π½ΠΎ ΡΠΈΠ»ΡŒΠ½Ρ–ΡˆΠ΅, Π½Ρ–ΠΆ Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½Π° Π· Ρ„Ρ€Π°ΠΊΡ†Ρ–Ρ— 2. Ряд Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΡ… ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–ΠΉ Π²ΠΈΠ²Ρ‡Π΅Π½ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ (ΠΏΠ΅Ρ€ΠΉΠΎΠ΄Π°Ρ‚Π½Π΅ окислСння, ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠ° ΠΏΡ€ΠΎΡ‚Π΅Π°Π·ΠΎΡŽ Ρ‚Π° дСліпідизація) ΠΏΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΆΡƒΡŽΡ‚ΡŒ Ρ€ΠΎΠ»ΡŒ Π²ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° комплСксу Ρƒ здійснСнні ΠΉΠΎΠ³ΠΎ Π°Π½Ρ‚ΠΈΠ½Π΅ΠΉΡ€Π°ΠΌΡ–Π½Ρ–Π΄Π°Π·Π½ΠΎΡ— Π΄Ρ–Ρ—; ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠ° ΠΏΡ€ΠΎΡ‚Π΅Π°Π·ΠΎΡŽ Π²Π΄Π²Ρ–Ρ‡Ρ– Π·Π½ΠΈΠΆΡƒΡ” Π°Π½Ρ‚ΠΈΠ½Π΅ΠΉΡ€Π°ΠΌΡ–Π½Ρ–Π΄Π°Π·Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ„Ρ€Π°ΠΊΡ†Ρ–Ρ— 2, Π½Π΅ Π²ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‡ΠΈ Π½Π° Ρ‚Π°ΠΊΡƒ ΠΆ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ„Ρ€Π°ΠΊΡ†Ρ–Ρ— 1.Из ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΉ срСды S. aureus Π²Ρ‹Π΄Π΅Π»Π΅Π½ Π³Π»ΠΈΠΊΠΎΠ»ΠΈΠΏΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ комплСкс с Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π½Π΅ΠΉΡ€Π°ΠΌΠΈΠ½ΠΈΠ΄Π°Π·Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ вируса Π³Ρ€ΠΈΠΏΠΏΠ°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π΄Π²Π΅ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ содСрТаниСм моносахаридов, пСрвая ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΠΌΠ°Π½Π½ΠΎΠ·Ρƒ, Π³Π»ΡŽΠΊΠΎΠ·Ρƒ, Ρ€Π°ΠΌΠ½ΠΎΠ·Ρƒ, глюкозамин ΠΈ Π³Π°Π»Π°ΠΊΡ‚ΠΎΠ·Π°ΠΌΠΈΠ½; вто­рая – всС эти моносахариды, ΠΊΡ€ΠΎΠΌΠ΅ Ρ€ΠΈΠΌΠ½ΠΎΠ·Ρ‹. ВСщСство, содСрТащССся Π²ΠΎ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ I, ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΠ΅Ρ‚ Π½Π΅ΠΉΡ€Π°ΠΌΠΈΠ½ΠΈΠ΄Π°Π·Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ Π² Ρ‚ΠΎ ΠΆΠ΅ врСмя усиливаСт Π³Π΅ΠΌΠ°Π³Π³Π»ΡŽΡ‚ΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ вируса Π³Ρ€ΠΈΠΏΠΏΠ° Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΡŽ, Ρ‡Π΅ΠΌ вСщСство ΠΈΠ· Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ 2. Ряд химичСских ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ (ΠΏΠ΅Ρ€ΠΉΠΎΠ΄Π°Ρ‚Π½ΠΎΠ΅ окислСниС, ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΡ€ΠΎΡ‚Π΅Π°Π·ΠΎΠΉ ΠΈ дСлипидизация) Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Ρ€ΠΎΠ»ΡŒ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° ком­плСкса Π² Π΅Π³ΠΎ Π°Π½Ρ‚ΠΈΠ½Π΅ΠΉΡ€Π°ΠΌΠΈΠ½ΠΈΠ΄Π°Π·Π½ΠΎΠΉ активности; ΠΏΡ€ΠΈ этом ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΡ€ΠΎΡ‚Π΅Π°Π·ΠΎΠΉ Π²Π΄Π²ΠΎΠ΅ сниТаСт Π°Π½Ρ‚ΠΈΠ½Π΅ΠΉΡ€Π°ΠΌΠΈΠ½ΠΈΠ΄Π°Π·Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ 2, Π½Π΅ влияя Π½Π° ΠΏΠΎΠ΄ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ 1

    Characterization of lipids A of Ralstonia solanacearum lipopolysaccharides

    No full text
    The analysis of fatty acid profiles of lipopolysacharides has shown that R. solanacearum strains tested may be divided into two groups. The first group is represented by R. solanacearum strains (5712, 7945, 7955 and 8110) the lipids A of which contained hydroxylated fatty acids with long chains: 3-hydroxytetradecanoic, 2-hydroxyhexadecanoic and 2-hydroxyoctadecanoic. The second group was represented by R. solanacearum strains the lipids A of which contained hydroxylated fatty acids with short chains: 3-hydroxydecanoic, 2-hydroxydodecanoic and 3-hydroxydodecanoic. 3-hydroxytetradecanoic acid was observed in a small amount. A comparative analysis of the fatty acid composition and biological activity gives a possibility to suppose that 3-hydroxytetradecanoic, 2-hydroxyhexadecanoic and 2-hydroxyoctadecanoic acids may be responsible for the toxicity and pyrogenicity of the lipopolysaccharides tested.Аналіз Тирнокислотних ΠΏΡ€ΠΎΡ„Ρ–Π»Ρ–Π² ліпополісахаридів ΡΠ²Ρ–Π΄Ρ‡ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎ Ρ‚Π΅, Ρ‰ΠΎ дослідТСні ΠΈΡ–Ρ‚Π°ΠΌΠΈ R. solanacearum ΠΌΠΎΠΆΠ½Π° ΠΏΠΎΠ΄Ρ–Π»ΠΈΡ‚ΠΈ Π½Π° Π΄Π²Ρ– Π³Ρ€ΡƒΠΏΠΈ. ΠŸΠ΅Ρ€ΡˆΠ° Π³Ρ€ΡƒΠΏΠ° прСдставлСна ΡˆΡ‚Π°ΠΌΠ°ΠΌΠΈ R. solaΒ­nacearum (5712, 7945, 7955 Ρ– 8110), Π»Ρ–ΠΏΡ–Π΄ΠΈ А яких ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ оксикислоти Π· Π΄ΠΎΠ²Π³ΠΈΠΌΠΈ Π²ΡƒΠ³Π»Π΅Ρ†Π΅Π²ΠΈΠΌΠΈ Π»Π°Π½Ρ†ΡŽΠ³Π°ΠΌΠΈ: 3-окситСтра-Π΄Π΅ΠΊΠ°Π½ΠΎΠ²Ρƒ, 2-оксигСксадСканову Ρ‚Π° 2-оксиоктадСканову. Π’ Π΄Ρ€ΡƒΠ³Ρƒ Π³Ρ€ΡƒΠΏΡƒ Π²Ρ…ΠΎΠ΄ΡΡ‚ΡŒ ΡˆΡ‚Π°ΠΌΠΈ R. solanacearum, Ρƒ Π»Ρ–ΠΏΡ–Π΄Π°Ρ… А яких присутні оксикислоти Π· ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΌΠΈ Π»Π°Π½Ρ†ΡŽΠ³Π°ΠΌΠΈ: 3-оксидСканова, 2-оксидодСканова Ρ‚Π° 3-оксидодСканова. 3-окситСтрадСканову кислоту Π·Π½Π°ΠΉΠ΄Π΅Π½ΠΎ Π² Π½Π΅Π·Π½Π°Ρ‡Π½Ρ–ΠΉ ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ–. ΠŸΠΎΡ€Ρ–Π²Π½ΡΠ»ΡŒΠ½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· Тирнокислотного складу Ρ‚Π° Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— активності Π΄Π°Ρ” підставу припустити, Ρ‰ΠΎ 3-окситСтрадСканова, 2-оксигСкса-Π΄Π΅ΠΊΠ°Π½ΠΎΠ²Π° Ρ‚Π° 2-оксиоктадСканова кислоти ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°Ρ‚ΠΈ Π·Π° Ρ‚ΠΎΠΊΡΠΈΡ‡Π½Ρ–ΡΡ‚ΡŒ Ρ‚Π° ΠΏΡ–Ρ€ΠΎΠ³Π΅Π½Π½Ρ–ΡΡ‚ΡŒ дослідТуваних ліпополіса­харидів.Анализ Тирнокислотных ΠΏΡ€ΠΎΡ„ΠΈΠ»Π΅ΠΉ липополисахаридов выявил, Ρ‡Ρ‚ΠΎ исслСдованныС ΡˆΡ‚Π°ΠΌΠΌΡ‹ R. solanacearum ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π° Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹. ΠŸΠ΅Ρ€Π²Π°Ρ Π³Ρ€ΡƒΠΏΠΏΠ° прСдставлСна ΡˆΡ‚Π°ΠΌΒ­ΠΌΠ°ΠΌΠΈ R. solanacearum (5712, 7945, 7955 ΠΈ 8110), Π»ΠΈΠΏΠΈΠ΄Ρ‹ А ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… содСрТат оксикислоты с Π΄Π»ΠΈΠ½Π½Ρ‹ΠΌΠΈ цСпями: 3-окси-Ρ‚Π΅Ρ‚Ρ€Π°Π΄Π΅ΠΊΠ°Π½ΠΎΠ²ΡƒΡŽ, 2-ΠΎΠΊΡΠΈΠ³Π΅ΠΊΡΠ°Π΄Π΅ΠΊΠ°Π½ΠΎΠ²ΡƒΡŽ ΠΈ 2-ΠΎΠΊΡΠΈΠΎΠΊΡ‚Π°Π΄Π΅ΠΊΠ°Π½ΠΎΠ²ΡƒΡŽ. Π’ΠΎ Π²Ρ‚ΠΎΡ€ΡƒΡŽ Π³Ρ€ΡƒΠΏΠΏΡƒ входят ΡˆΡ‚Π°ΠΌΠΌΡ‹ R. solanacearum, Π² Π»ΠΈΠΏΠΈΠ΄Π°Ρ… А ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ оксикислоты с ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΌΠΈ цСпями: 3-оксидСкановая, 2-оксидодСкановая ΠΈ 3-оксидодСкановая. 3-окситСтрадСкановая кислота ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° Π² Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ количСствС. Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Тирнокислотного состава ΠΈ биологичСской активности Π΄Π°Π΅Ρ‚ основаниС ΠΏΡ€Π΅Π΄ΠΏΠΎΒ­Π»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ 3-окситСтрадСкановая, 2-оксигСксадСкановая ΠΈ 2-оксиоктадСкановая кислоты ΠΌΠΎΠ³ΡƒΡ‚ ΠΎΡ‚Π²Π΅Ρ‡Π°Ρ‚ΡŒ Π·Π° Ρ‚ΠΎΠΊΡΠΈΡ‡Β­Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΏΠΈΡ€ΠΎΠ³Π΅Π½Π½ΠΎΡΡ‚ΡŒ исслСдованных липополисахаридов

    Characterization of lipids A of Ralstonia solanacearum lipopolysaccharides

    No full text
    The analysis of fatty acid profiles of lipopolysacharides has shown that R. solanacearum strains tested may be divided into two groups. The first group is represented by R. solanacearum strains (5712, 7945, 7955 and 8110) the lipids A of which contained hydroxylated fatty acids with long chains: 3-hydroxytetradecanoic, 2-hydroxyhexadecanoic and 2-hydroxyoctadecanoic. The second group was represented by R. solanacearum strains the lipids A of which contained hydroxylated fatty acids with short chains: 3-hydroxydecanoic, 2-hydroxydodecanoic and 3-hydroxydodecanoic. 3-hydroxytetradecanoic acid was observed in a small amount. A comparative analysis of the fatty acid composition and biological activity gives a possibility to suppose that 3-hydroxytetradecanoic, 2-hydroxyhexadecanoic and 2-hydroxyoctadecanoic acids may be responsible for the toxicity and pyrogenicity of the lipopolysaccharides tested.Аналіз Тирнокислотних ΠΏΡ€ΠΎΡ„Ρ–Π»Ρ–Π² ліпополісахаридів ΡΠ²Ρ–Π΄Ρ‡ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎ Ρ‚Π΅, Ρ‰ΠΎ дослідТСні ΠΈΡ–Ρ‚Π°ΠΌΠΈ R. solanacearum ΠΌΠΎΠΆΠ½Π° ΠΏΠΎΠ΄Ρ–Π»ΠΈΡ‚ΠΈ Π½Π° Π΄Π²Ρ– Π³Ρ€ΡƒΠΏΠΈ. ΠŸΠ΅Ρ€ΡˆΠ° Π³Ρ€ΡƒΠΏΠ° прСдставлСна ΡˆΡ‚Π°ΠΌΠ°ΠΌΠΈ R. solaΒ­nacearum (5712, 7945, 7955 Ρ– 8110), Π»Ρ–ΠΏΡ–Π΄ΠΈ А яких ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ оксикислоти Π· Π΄ΠΎΠ²Π³ΠΈΠΌΠΈ Π²ΡƒΠ³Π»Π΅Ρ†Π΅Π²ΠΈΠΌΠΈ Π»Π°Π½Ρ†ΡŽΠ³Π°ΠΌΠΈ: 3-окситСтра-Π΄Π΅ΠΊΠ°Π½ΠΎΠ²Ρƒ, 2-оксигСксадСканову Ρ‚Π° 2-оксиоктадСканову. Π’ Π΄Ρ€ΡƒΠ³Ρƒ Π³Ρ€ΡƒΠΏΡƒ Π²Ρ…ΠΎΠ΄ΡΡ‚ΡŒ ΡˆΡ‚Π°ΠΌΠΈ R. solanacearum, Ρƒ Π»Ρ–ΠΏΡ–Π΄Π°Ρ… А яких присутні оксикислоти Π· ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΌΠΈ Π»Π°Π½Ρ†ΡŽΠ³Π°ΠΌΠΈ: 3-оксидСканова, 2-оксидодСканова Ρ‚Π° 3-оксидодСканова. 3-окситСтрадСканову кислоту Π·Π½Π°ΠΉΠ΄Π΅Π½ΠΎ Π² Π½Π΅Π·Π½Π°Ρ‡Π½Ρ–ΠΉ ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ–. ΠŸΠΎΡ€Ρ–Π²Π½ΡΠ»ΡŒΠ½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· Тирнокислотного складу Ρ‚Π° Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— активності Π΄Π°Ρ” підставу припустити, Ρ‰ΠΎ 3-окситСтрадСканова, 2-оксигСкса-Π΄Π΅ΠΊΠ°Π½ΠΎΠ²Π° Ρ‚Π° 2-оксиоктадСканова кислоти ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π°Ρ‚ΠΈ Π·Π° Ρ‚ΠΎΠΊΡΠΈΡ‡Π½Ρ–ΡΡ‚ΡŒ Ρ‚Π° ΠΏΡ–Ρ€ΠΎΠ³Π΅Π½Π½Ρ–ΡΡ‚ΡŒ дослідТуваних ліпополіса­харидів.Анализ Тирнокислотных ΠΏΡ€ΠΎΡ„ΠΈΠ»Π΅ΠΉ липополисахаридов выявил, Ρ‡Ρ‚ΠΎ исслСдованныС ΡˆΡ‚Π°ΠΌΠΌΡ‹ R. solanacearum ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π° Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹. ΠŸΠ΅Ρ€Π²Π°Ρ Π³Ρ€ΡƒΠΏΠΏΠ° прСдставлСна ΡˆΡ‚Π°ΠΌΒ­ΠΌΠ°ΠΌΠΈ R. solanacearum (5712, 7945, 7955 ΠΈ 8110), Π»ΠΈΠΏΠΈΠ΄Ρ‹ А ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… содСрТат оксикислоты с Π΄Π»ΠΈΠ½Π½Ρ‹ΠΌΠΈ цСпями: 3-окси-Ρ‚Π΅Ρ‚Ρ€Π°Π΄Π΅ΠΊΠ°Π½ΠΎΠ²ΡƒΡŽ, 2-ΠΎΠΊΡΠΈΠ³Π΅ΠΊΡΠ°Π΄Π΅ΠΊΠ°Π½ΠΎΠ²ΡƒΡŽ ΠΈ 2-ΠΎΠΊΡΠΈΠΎΠΊΡ‚Π°Π΄Π΅ΠΊΠ°Π½ΠΎΠ²ΡƒΡŽ. Π’ΠΎ Π²Ρ‚ΠΎΡ€ΡƒΡŽ Π³Ρ€ΡƒΠΏΠΏΡƒ входят ΡˆΡ‚Π°ΠΌΠΌΡ‹ R. solanacearum, Π² Π»ΠΈΠΏΠΈΠ΄Π°Ρ… А ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ оксикислоты с ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΌΠΈ цСпями: 3-оксидСкановая, 2-оксидодСкановая ΠΈ 3-оксидодСкановая. 3-окситСтрадСкановая кислота ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° Π² Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ количСствС. Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Тирнокислотного состава ΠΈ биологичСской активности Π΄Π°Π΅Ρ‚ основаниС ΠΏΡ€Π΅Π΄ΠΏΠΎΒ­Π»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ 3-окситСтрадСкановая, 2-оксигСксадСкановая ΠΈ 2-оксиоктадСкановая кислоты ΠΌΠΎΠ³ΡƒΡ‚ ΠΎΡ‚Π²Π΅Ρ‡Π°Ρ‚ΡŒ Π·Π° Ρ‚ΠΎΠΊΡΠΈΡ‡Β­Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΏΠΈΡ€ΠΎΠ³Π΅Π½Π½ΠΎΡΡ‚ΡŒ исслСдованных липополисахаридов

    Structure and gene cluster of the O antigen of E. Coli L-19, a candidate for a new O-serogroup

    No full text
    Escherichia coli L-19 isolated from a healthy individual did not agglutinate with any of 21 polyvalent antisera that cover 174 E. coli O-serogroups. The strain was studied in respect to the O-antigen (O-specific polysaccharide, OPS) structure and genetics. The LPS was isolated by phenol–water extraction of bacterial cells and cleaved by mild acid hydrolysis to yield the OPS. The OPS was studied by sugar and methylation analyses, along with 1D and 2D 1 H and 13C NMR spectroscopy. The established structure of the linear tetrasaccharide repeating unit was found to be unique among known bacterial polysaccharide structures. A peculiar component of the L-19 OPS was an amide of glucuronic acid with 2-amino-1,3-propanediol (2-amino-2-deoxyglycerol) (GroN). The O-antigen gene cluster of L-19 between the conserved genes galF and gnd was sequenced, and gene functions were tentatively assigned by a comparison with sequences in the available databases and found to be in agreement with the OPS structure. Except for putative genes for synthesis and transfer of GroN, the sequences in the L-19 O-antigen gene cluster were little related to those of reference strains of the 174 known E. coli O-serogroups. The data obtained suggest that L-19 can be considered as a candidate for a new E. coli O-serogroup

    Structure and gene cluster of the O antigen of E. Coli L-19, a candidate for a new O-serogroup

    No full text
    Escherichia coli L-19 isolated from a healthy individual did not agglutinate with any of 21 polyvalent antisera that cover 174 E. coli O-serogroups. The strain was studied in respect to the O-antigen (O-specific polysaccharide, OPS) structure and genetics. The LPS was isolated by phenol–water extraction of bacterial cells and cleaved by mild acid hydrolysis to yield the OPS. The OPS was studied by sugar and methylation analyses, along with 1D and 2D 1 H and 13C NMR spectroscopy. The established structure of the linear tetrasaccharide repeating unit was found to be unique among known bacterial polysaccharide structures. A peculiar component of the L-19 OPS was an amide of glucuronic acid with 2-amino-1,3-propanediol (2-amino-2-deoxyglycerol) (GroN). The O-antigen gene cluster of L-19 between the conserved genes galF and gnd was sequenced, and gene functions were tentatively assigned by a comparison with sequences in the available databases and found to be in agreement with the OPS structure. Except for putative genes for synthesis and transfer of GroN, the sequences in the L-19 O-antigen gene cluster were little related to those of reference strains of the 174 known E. coli O-serogroups. The data obtained suggest that L-19 can be considered as a candidate for a new E. coli O-serogroup

    Functional properties of individual sub-domains of the fibrin(ogen) Ξ±C-domains

    No full text
    Background: Fibrinogen is a large polyfunctional plasma protein consisting of a number of structural and functional domains. Among them, two Ξ±C-domains, each formed by the amino acid residues Аα392–610, are involved in fibrin polymerization, activation of fibrinolysis, platelet aggregation, and interaction with different cell types. Previous study revealed that each fibrinogen Ξ±C-domain consists of the N-terminal and C-terminal sub-domains. The major objections of the present study were to test functional role of these sub-domains in the above mentioned processes. Methods: To achieve these objections, we used specific proteases to prepare two truncated forms of fibrinogen, fibrinogen desAΞ±505–610 and fibrinogen desAΞ±414–610, missing their N-terminal and both N- and C-terminal sub-domains, respectively. Results: Our study with these truncated forms using turbidity measurements and electron microscopy revealed that the N- and C-terminal subdomains both contribute to protofibril formation and their lateral aggregation into fibers during fibrin polymerization process. These two sub-domains also contributed to platelet aggregation with the N-terminal sub-domains playing a more significant role in this process. At the same time, the C-terminal sub-domains make the major contribution to the plasminogen activation process. Further, our experiments revealed that the C-terminal sub-domains are involved in endothelial cell viability and migration of cancer cells. Conclusions: Thus, the results obtained establish the functional role of individual sub-domains of the Ξ±C-domains in fibrin polymerization, activation of fibrinolytic system, platelet aggregation, and cellular interactions. General significance: The present study expands our understanding of the functional role of individual fibrinogen domains and their specific portions in various fibrin(ogen)-dependent processes
    corecore