140 research outputs found

    Emergent Spirograph-like Patterns from Artificial Swarming

    Get PDF
    Computer simulations of a nonlinear planar system of first-order ODEs which we developed from a simple assumption that biological swarming is an outcome of aggregative behavior of the individuals in the swarm showed a surprising and novel outcome; the emergence of uniquely structured patterns that are intriguingly intricate, exquisite, symmetrical and regular. Some patterns look like flowers; others look like Spirograph curves and Guilloché patterns but with more intricate variations. Unlike Spirograph curves though, the swarm-induced patterns cannot be reproduced by any closed-form formula or by another pattern subjected to some resizing, translation, rotation and/or reflection

    A cohesive langrangian swarm and its application to multiple unicycle-like vehicles

    Get PDF
    Swarm principles are increasingly being used to design controllers for the coordination of multi-robot systems or, in general,multi-agent systems. This paper proposes a two-dimensional Lagrangian swarm model that enables the planar agents, modeled as point masses, to swarm whilst effectively avoiding each other and obstacles in the environment. A novel method, based on an extended Lyapunov approach, is used to construct the model. Importantly, the Lyapunov method ensures a form of practical stability that guarantees an emergent behavior, namely, a cohesive and wellspaced swarm with a constant arrangement of individuals about the swarm centroid. Computer simulations illustrate this basic feature of collective behavior. As an application, we show how multiple planar mobile unicycle-like robots swarm to eventually form patterns in which their velocities and orientations stabilize

    Motion Planning and Posture Control of Multiple n-link Doubly Nonholonomic Manipulators

    Get PDF
    The paper considers the problem of motion planning and posture control of multiple n-link doubly nonholonomic mobile manipulators in an obstacle-cluttered and bounded workspace. The workspace is constrained with the existence of an arbitrary number of fixed obstacles (disks, rods and curves), artificial obstacles and moving obstacles. The coordination of multiple n-link doubly nonholonomic mobile manipulators subjected to such constraints becomes therefore a challenging navigational and steering problem that few papers have considered in the past. Our approach to developing the controllers, which are novel decentralized nonlinear acceleration controllers, is based on a Lyapunov control scheme that is not only intuitively understandable but also allows simple but rigorous development of the controllers. Via the scheme, we showed that the avoidance of all types of obstacles was possible, that the manipulators could reach a neighborhood of their goal and that their final orientation approximated the desired orientation. Computer simulations illustrate these results. KEYWORDS: Lyapunov-based control scheme; Doubly nonholonomic manipulators; Ghost parking bays; Minimum distance technique; Stability; Kinodynamic constraints

    Novel Lyapunov - based autonomous controllers for Qquadrotors

    Get PDF
    In this paper, we look into the dynamic motion planning and control of an unmanned aerial vehicle, namely, the quadrotor, governed by its dynamical equations. It is shown for the first time that the Direct or the Second Method of Lyapunov is an effective tool to derive a set of continuous nonlinear control laws that not only provide smooth trajectories from a designated initial position to a designated target, but also continuously minimise the roll and pitch of the quadrotor en route to its targets. The latter successfully addresses the challenging problem of a quadrotor autonomously transporting valuable and fragile payloads safely to the designated target. Computer simulations are used to illustrate the effectiveness of the proposed control laws

    Obstacle and Collision Avoidance Control Laws of a Swarm of Boids

    Get PDF
    This paper proposes a new obstacle and collision avoidance control laws for a three-dimensional swarm of boids. The swarm exhibit collective emergent behaviors whilst avoiding the obstacles in the workspace. While flocking, animals group up in order to do various tasks and even a greater chance of evading predators. A generalized algorithms for attraction to the centroid, inter-individual swarm avoidance and obstacle avoidance is designed in this paper. We present a set of new continuous time-invariant velocity control laws is presented which is formulated via the Lyapunov-based control scheme. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws is demonstrated via computer simulations

    Motion control of a 2 - link revolute manipulator in an obstacle - ridden workspace

    Get PDF
    In this paper, we propose a solution to the motion control problem of a 2-link revolute manipulator arm. We require the end-effector of the arm to move safely to its designated target in a priori known workspace cluttered with fixed circular obstacles of arbitrary position and sizes. Firstly a unique velocity algorithm is used to move the end-effector to its target. Secondly, for obstacle avoidance a turning angle is designed, which when incorporated into the control laws ensures that the entire robot arm avoids any number of fixed obstacles along its path enroute the target. The control laws proposed in this paper also ensure that the equilibrium point of the system is asymptotically stable. Computer simulations of the proposed technique are presented

    Lane changing and merging maneuvers of car-like robots

    Get PDF
    This research paper designs a unique motion planner of multiple platoons of nonholonomic car-like robots as a feasible solution to the lane changing/merging maneuvers. The decentralized planner with a leaderless approach and a path-guidance principle derived from the Lyapunov-based control scheme generates collision free avoidance and safe merging maneuvers from multiple lanes to a single lane by deploying a split/merge strategy. The fixed obstacles are the markings and boundaries of the road lanes, while the moving obstacles are the robots themselves. Real and virtual road lane markings and the boundaries of road lanes are incorporated into a workspace to achieve the desired formation and configuration of the robots. Convergence of the robots to goal configurations and the repulsion of the robots from specified obstacles are achieved by suitable attractive and repulsive potential field functions, respectively. The results can be viewed as a significant contribution to the avoidance algorithm of the intelligent vehicle systems (IVS). Computer simulations highlight the effectiveness of the split/merge strategy and the acceleration-based controllers

    Motion planning and posture control of the general 3 - trailer system

    Get PDF
    This paper presents a set of artificial potential field functions that improves upon, in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of the general3-trailer system in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. Simulations are provided to demonstrate the effectiveness of the controls laws
    corecore