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Abstract—Swarm principles are increasingly being used to design
controllers for the coordination of multi-robot systems or, in gen-
eral, multi-agent systems. This paper proposes a two-dimensional
Lagrangian swarm model that enables the planar agents, modeled
as point masses, to swarm whilst effectively avoiding each other and
obstacles in the environment. A novel method, based on an extended
Lyapunov approach, is used to construct the model. Importantly,
the Lyapunov method ensures a form of practical stability that
guarantees an emergent behavior, namely, a cohesive and well-
spaced swarm with a constant arrangement of individuals about the
swarm centroid. Computer simulations illustrate this basic feature
of collective behavior. As an application, we show how multiple
planar mobile unicycle-like robots swarm to eventually form patterns
in which their velocities and orientations stabilize.

Keywords—Attractive-repulsive swarm model; individual-based
swarm model; Lagrangian swarm model; Lyapunov stability;
Lyapunov-like function; practical stability; unicycle.

I. INTRODUCTION

THE collective motion of organisms, as exhibited, for ex-

ample, by schools of fish, flocks of birds, herds of mam-

mals and swarms of bacteria, has, for many years, fascinated

scientists, who yearned to understand the underlying coopera-

tive dynamics [1]. The fact that certain engineering problems

in Artificial Intelligence can be solved in an ingenious way

by roughly mimicking this natural phenomenon [2], [3] has

led to greater efforts by mathematicians, engineers, computer

scientists, physicists and biologists, in recent years, to seek

better understanding of self-organization in organisms, and the

formation and the persistence of aggregation [4], [5]. From

their work, it is now possible to categorize the approaches

for developing a model of a biological swarm into two: the

Eulerian and the Lagrangian approaches [1], [4], [6]–[9]. In

the Eulerian approach, the swarm is considered a continuum
described by its density in one-, two- or three-dimensional

space. The time evolution of animal density is usually modeled

by partial differential equations. In the Lagrangian approach,

the state (position, instantaneous velocity and instantaneous

acceleration) of each individual and its relationship with

other individuals in the swarm is studied; it is an individual-
based approach, in which the velocity and acceleration can

be influenced by spatial coordinates of the individual. The

time evolution of the state is usually described by ordinary

or stochastic differential equations. Comprehensive reviews of

these approaches and their advantages and disadvantages can

also be found in [10] and [11].
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Lagrangian swarm models, with attractive-repulsive inter-

individual interaction, assume that swarming behavior is a

result of the interplay between a long-range attraction and a

short-range repulsion between the individuals in the swarm,

with the centroid being the center of attraction [10], [12]. The

pioneering paper by Gazi and Passino [12] went further by

developing a Lagrangian model based on the Direct Method

of Lyapunov and showing that the model is stable and exhibits

an emergent behavior wherein there is a constant arrangement

about the centroid. This paper shows, for the first time, that the

concept of practical stability founded on an extended method

of Lyapunov is also particularly effective in the construction

of another Lagrangian swarm model due to the fact that

biological swarming is a bounded activity about a central

point, with no inter-individual collision. In such models, the

centroid may not be stationary or may not be mathematically

stable, yet the collective behavior of the individuals in the

vicinity of the centroid is an emergent bounded pattern;

that is, the model is practically stable. Via a Lyapunov-like

function, we create the new and relatively simple individual-

based continuous time model for swarm aggregation in two-

dimensional space. The Lyapunov-like function, which has

inter-individual attractive and collision-avoidance components,

guarantees the practical stability of the model, shows that an

emergent collective behavior is a constant arrangement about

the centroid, and provides an approximation of the size and

density of the swarm. Four parameters, which we call the co-
hesion parameters, coupling parameters, obstacle avoidance
parameters, and convergence parameters, are utilized in the

model. They are a measure of the strengths of the cohesion

of the swarm, the interaction between any two individuals,

the interaction between an individual and an obstacle, and the

rate of convergence of an individual to the swarm centroid.

By varying these parameters computer simulations illustrate

basic features of collective behavior such as congregation

of individuals about their centroid and avoidance due to the

presence of fixed obstacles. Note the only known work on

practical stability of swarm models are by Chen et al. in

2006 [13], Pan et al. in 2008 [14], [15] and Xue and Zeng in

2009 [16]. However, the models are the original Gazi-Passino

swarm model and its variations [10], [12], which have already

been shown to be Lyapunov stable. Moreover, the authors did

not provide the biological motivations behind the necessity to

apply the concept of practical stability.
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II. A TWO-DIMENSIONAL SWARM MODEL AND ITS

PRACTICAL STABILITY

We shall construct a model of a swarm with n individuals

moving with the velocity of the swarm’s centroid. Following

previous work such as those of [9] and [10], we consider

the individuals as point masses. For clarity of exposition, we

confine ourselves to constructing the two-dimensional version

of the model; it is a simple matter to extend it to three-

dimensional.

At time t ≥ 0, let (xi(t), yi(t)), i = 1, 2, . . . , n, be the

planar position of the ith individual, which we shall define as

a point mass residing in a disk of radius ri > 0,

Bi = {(z1, z2) ∈ R
2 : (z1 − xi)2 + (z2 − yi)2 ≤ r2

i }. (1)

The disk is described in [9] as a bin, and in [10] as a private or
safety area of each individual. We shall use the former term,

with bin size being the radius ri of the disk.

Let us define the centroid of the swarm as

(xc, yc) =

(
1
n

n∑
k=1

xk,
1
n

n∑
k=1

yk

)
. (2)

At time t ≥ 0, let (vi(t), wi(t)) := (x′
i(t), y

′
i(t)) be the

instantaneous velocity of the ith point mass. Using the above

notations, we have thus a system of first-order ODEs for the

ith individual, assuming the initial condition at t = t0 ≥ 0:

x′
i(t) = vi(t),

y′
i(t) = wi(t),

xi0 := xi(t0),
yi0 := yi(t0).

⎫⎪⎪⎬
⎪⎪⎭ (3)

Suppressing t, we let xi = (xi, yi, ) ∈ R
2 and x =

(x1, . . . ,xn) ∈ R
2n be our state vectors. Also, let

x0 = x(t0) = (x10, y10, . . . , xn0, yn0)︸ ︷︷ ︸
2n terms

.

If gi(x) := (vi, wi) ∈ R2 and G(x) := (g1(x), . . . ,gn(x)) ∈
R

2n, then our swarm system of n individuals is

ẋ = G(x), x0 = x(t0). (4)

Let x∗
i := (xc, yc) for i = 1, 2, . . . , n, and

x∗ = (x∗
1, . . . ,x

∗
n)

=

(
1
n

n∑
k=1

xk,
1
n

n∑
k=1

yk, · · · ,
1
n

n∑
k=1

xk,
1
n

n∑
k=1

yk

)
︸ ︷︷ ︸

2n terms

.

Then we have the Euclidean norm

‖x − x∗‖

=

√√√√(x1 − 1
n

n∑
k=1

xk

)2

+ · · · +
(

yn − 1
n

n∑
k=1

yk

)2

.

If G ∈ C[R2n, R2n], then we can invoke the definition of the

practical stability of system (4) as provided by [17], noting

that we do not need the existence of an equilibrium point of

the system. In the definition, R+ := [0,∞).

Definition 1: System (4) is said to be

(PS1) practically stable if given (λ,A) with 0 < λ < A, we

have ‖x0 − x∗‖ < λ implies that ‖x(t) − x∗‖ < A,

t ≥ t0 for some t0 ∈ R+;

(PS2) uniformly practically stable if (PS1) holds for every t0 ∈
R+.

The following comparison principle for practical stability is

also adapted from [17] for system (4), where

S(ρ) := {x ∈ R
2n : ‖x − x∗‖ < ρ},

K = {a ∈ C[R+, R+] :
a(u) is strictly increasing in u and

a(u) → ∞ as u → ∞},

and, for any Lyapunov-like function V ∈ C[R+ × R
2n, R+],

D+V (t,x) := lim sup
h→0+

V (t + h,x + hG(x)) − V (t,x)
h

,

for (t,x) ∈ R+ ×R
2n, noting that if V ∈ C1[R+ ×R

2n, R+],
then D+V (t,x) = V ′(t,x), where V ′(t,x) = Vt(t,x) +
Vx(t,x)G(x).

Theorem 1: ( [17]) Assume that

1) λ and A are given such that 0 < λ < A;

2) V ∈ C[R+ × R
2n, R+] and V (t,x) is locally Lips-

chitzian in x;

3) for (t,x) ∈ R+ × S(A), b1(‖x − x∗‖) ≤ V (t,x) ≤
b2(‖x − x∗‖), b1, b2 ∈ K and D+V (t,x) ≤
q(t, V (t,x)), q ∈ C[R2

+, R];
4) b2(λ) < b1(A) holds.

Then the practical stability properties of the scalar differential
equation

z′(t) = q(t, z) , z(t0) = z0 ≥ 0 ,

imply the corresponding practical stability properties of sys-
tem (4).

III. VELOCITY CONTROLLERS

Our control objective is to construct the instantaneous

velocity (vi(t), wi(t)), t ≥ 0, for every individual i ∈ N via a

Lyapunov-like function that satisfies Theorem 1. We will use

the following two terms from [9] as we develop our Lyapunov-

like function for system (4):

1) A cohesive swarm is a group (of individuals or agents)

in which the distances between individuals are bounded

from above.

2) A well-spaced swarm is a group (of individuals or

agents) which does not collapse into a tight cluster.

Members of a cohesive group tend to stay together and avoid

dispersing. In a well-spaced swarm, some minimal bin size

exists such that each bin contains at most one individual.

Moreover, the size of such a bin is independent of the number

of individuals in the group.
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A. Attraction to the Centroid

We can ensure that individuals are attracted to each other

and also form a cohesive group by first having a measurement

of the distance from the ith individual to the swarm centroid.

This is the concept behind flock centering, which is one of the

well-known three heuristic flocking rules of Reynolds’ [18].

The rule minimizes the exposure of a member of a flock to

the flock’s exterior by having the member move toward the

perceived center of the flock. It is therefore a form of attraction

between individuals. Centering necessitates a measurement of

the distance from the the ith individual to the swarm centroid.

Thus, we consider the following function, for i ∈ N,

Ri(x) :=
1
2

⎡
⎣(xi − 1

n

n∑
i=1

xi

)2

+

(
yi − 1

n

n∑
i=1

yi

)2
⎤
⎦ .

This will be part of a Lyapunov-like function for system (4),

and as we shall see later, its role is to ensure that ith individual

is attracted to the swarm centroid.

B. Inter-individual Collision Avoidance

The short-range repulsion between individuals necessitates

first a measurement of the distance between the ith and the

jth individuals, j �= i, i, j ∈ N. With equation (1) of the ith
individual in mind, we consider the following function for this

purpose:

Qij(x) :=
1
2

[
(xi − xj)

2 + (yi − yj)
2 − (ri + rj)2

]
.

This will also be part of the same Lyapunov-like function.

C. A Lyapunov-like Function and Well-Spaced Swarms

Let there be real numbers γi > 0, βij > 0 for i, j =
1, . . . , n. Let

Li(x) := γiRi(x) +
n∑

j=1,
j �=i

βijRi(x)
Qij(x)

.

Consider as a tentative Lyapunov-like function for system (4),

L(x) :=
n∑

i=1

Li(x). (5)

It is clear that L is continuous and locally positive definite

over the domain

D(L) :=

⎧⎪⎪⎨
⎪⎪⎩x ∈ R

2n :
n∑

i=1

n∑
j=1,
j �=i

Qij(x) > 0

⎫⎪⎪⎬
⎪⎪⎭ .

Note that L(x∗) = 0. However, x∗ /∈ D(L) since

n∑
i=1

n∑
j=1,
j �=i

Qij(x∗) = −1
2

n∑
i=1

n∑
j=1,
j �=i

(ri + rj)2 < 0.

This is indeed a desirable situation since if x∗ ∈ D(L), and if

at some time t ≥ 0, we have that x = x∗, then this implies that

the swarm has collapsed onto itself, a biologically impossible

situation. As we alluded to earlier, we are not interested in the

centroid, but in the behavior of our swarm in the vicinity of

its centroid. In other words, we are interested in a well-spaced

swarm.

The time-derivative of L along every solution of system (4)

is the dot product of the gradient of L, given by,

∇L =
(

∂L

∂x1
,

∂L

∂y1
, · · · ,

∂L

∂xn
,

∂L

∂yn

)
,

and the time-derivative of the state vector x =
(x1, y1, . . . , xn, yn). That is,

L̇(x) = ∇L(x) • ẋ

=
n∑

i=1

⎛
⎜⎜⎝γiṘi(x) +

n∑
j=1,
j �=i

βij

Qij(x)
Ṙi(x)

−
n∑

j=1,
j �=i

βijRi(x)
Q2

ij(x)
Q̇ij(x)

⎞
⎟⎟⎠ .

Now, collecting terms with x′
i and y′

i, and substituting x′
i =

ẋi = vi and y′
i = ẏi = wi from system (3), we have

L̇(x) =
n∑

i=1

[
∂L

∂xi
· ẋi +

∂L

∂yi
· ẏi

]

=
n∑

i=1

[
∂L

∂xi
· vi +

∂L

∂yi
· wi

]
,

where

∂L

∂xi
=

⎛
⎜⎜⎝γi +

n∑
j=1,
j �=i

βij

Qij(x)

⎞
⎟⎟⎠
(

xi − 1
n

n∑
k=1

xk

)

− 2
n∑

j=1,
j �=i

βijRi(x)
Q2

ij(x)
(xi − xj), (6)

and

∂L

∂yi
=

⎛
⎜⎜⎝γi +

n∑
j=1,
j �=i

βij

Qij(x)

⎞
⎟⎟⎠
(

yi − 1
n

n∑
k=1

yk

)

− 2
n∑

j=1,
j �=i

βijRi(x)
Q2

ij(x)
(yi − yj). (7)

Let there be real numbers μi > 0 and ϕi > 0 such that

vi = −μi
∂L

∂xi
, and wi = −ϕi

∂L

∂yi
.

Then for all x ∈ D(L),

L̇(x) = −
n∑

i=1

[
μi

(
∂L

∂xi

)2

+ ϕi

(
∂L

∂yi

)2
]

= −
n∑

i=1

[
v2

i

μi
+

w2
i

ϕi

]
≤ 0.
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For the ith individual, system (3) therefore becomes

x′
i(t) = −μi

∂L

∂xi
, y′

i(t) = −ϕi
∂L

∂yi
,

xi0 = xi(t0), yi0 = yi(t0), t0 ≥ 0.

⎫⎪⎬
⎪⎭ (8)

Define the n × n diagonal matrix

H = diag(μ1, ϕ1, . . . , μn, ϕn︸ ︷︷ ︸
2n elements

).

Then our system (4) becomes the gradient system

ẋ = G(x) = −H (∇L(x)), x0 := x(t0), t0 ≥ 0, (9)

the ith term of which is given by (8). It is clear that

G ∈ C[D(L), R2n].

D. Practical Stability

Theorem 2: System (9) is uniformly practically stable.

Proof: Since L̇(x(t)) ≤ 0, we have

0 ≤ L(x(t)) ≤ L(x(t0)) ∀ t ≥ t0 ≥ 0. (10)

Accordingly, for comparative analysis, it is sufficient to con-

sider the practical stability of the scalar differential equation

z′(t) = 0, z(t0) =: z0, t0 ≥ 0. (11)

The solution is z(t; t0, z0) = z0, so that relative to every point

z∗ ∈ R, we have

z(t; t0, z0 − z∗) = z0 − z∗,

and for any given number P0 > 0, we have

|z(t; t0, z0 − z∗)| ≤ |z0 − z∗| + P0.

We shall next show that whilst applying Theorem 1, we can

simultaneously derive the explicit form of P0 > 0, with which

it is easy to see that (PS2) holds for equation (11) if

A = A(λ) := λ + P0.

To apply Theorem 1, we restrict our domain to D(L) over

which we see that L ∈ C[D(L), R+], and note that L is locally

Lipschitzian in D(L) since dL/dt ≤ 0 in D(L). Re-defining

S(ρ) as S(ρ) = {x ∈ D(L) : ‖x−x∗‖ < ρ}, we get S(A) =
{x ∈ D(L) : ‖x − x∗‖ < λ + P0}. Recalling that γi > 0,

i ∈ N, we let γmin := min
i∈N

γi and γmax := maxi∈N γi. Further,

let

b1(‖x − x∗‖) :=
1
2
γmin‖x − x∗‖2,

and

b2(‖x − x∗‖) :=
1
2
γmax [‖x − x∗‖ + L(x0)]

2
,

noting that b1, b2 ∈ K. Then assuming P0 > 0 is given, we

easily see that, with (10), we have, b1(‖x − x∗‖) ≤ L(x) ≤
b2(‖x − x∗‖) for all x ∈ S(A), since

n∑
i=1

Ri(x) =
1
2
‖x − x∗‖2.

Indeed, the inequality b2(λ) < b1(A) yields

1
2
γmax [λ + L(x0)]

2
<

1
2
γmin[λ + P0]2,

which holds if we choose

P0 >

[(√
γmax

γmin
− 1
)

+
√

γmax

γmin
L(x0)

]
.

Since γmax/γmin ≥ 1 for any γmax, γmin > 0, and because

of (10), it is clear that P0 exists and P0 > 0. Thus, with

q(t, z) ≡ 0, we conclude the proof of Theorem 2.

E. Insight into the form of the Lyapunov-like Function and
Cohesiveness

Let us now discuss the idea behind the construction of our

Lyapunov-like function L(x). At large distances between the

ith and the jth individuals, the ratio,

n∑
i=1

n∑
j=1,
j �=i

βijRi(x)
Qij(x)

, (12)

is negligible, and the term

n∑
i=1

γiRi(x) dominates. Then, since

L(x) → 0 as x → x∗, the long-range attraction requirement

in a swarm model is met, and

n∑
i=1

γiRi acts as the attraction

function; each individual is attracted to the centroid, and

therefore the swarm system (9) maintains centering and hence

cohesiveness at all times. In fact, Theorem 2 proves the

cohesiveness of the swarm, with the boundedness of solution

for all time t ≥ t0 implying that distances between individuals

are bounded from above at all times. Note that the parameter

γi > 0 can be considered as a measurement of the strength

of attraction between an individual i and the swarm centroid,

and hence between each other. The smaller the parameter is,

the weaker the cohesion of the swarm is. Hence, γi can be

considered a cohesion parameter.

Consider now the situation where any two individuals i
and j approach each other. In this case, Qij decreases and

ratio (12) increases, with βij > 0 acting as a coupling
parameter that is a measurement of the strength of interaction

between the individuals. In this way, ratio (12) acts as an

inter-individual collision-avoidance function, because it can

be allowed to increase in value (corresponding to avoidance)

as individuals approach each other. However, this increase

cannot be unbounded in D(L) because Theorem 2 shows

that every solution x(t) of system (9) is bounded. In other

words, collision-avoidance occurs without the danger of the

individuals getting too close to each other, or the swarm

collapsing on itself; simply Qij = 0 is not possible in D(L).
We have therefore met the short-range repulsion requirement

in an individual-based model. Note that the increase in the

ratio does not translate to an increase in L ≡ L(t), simply

because L is non-increasing in t and any increase in the ratio

gives a smaller or the same value of L at time t compared to

all previous values of L.

The choices of βij > 0 determine whether our system is

isotropic (there is uniformity in attraction or repulsion between
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all members of the swarm) or anisotropic (there are unequal

attractive and repulsive forces). If βij > 0 are the same for

all individuals, then we have an isotropic swarm model. If

they differ between at least two individuals, then the model is

anisotropic.

Finally, note that we have used two other parameters,

μi > 0 and ϕi > 0 in system (9). Because the parameters

are a measure of the rate of decrease of L ≡ L(t) at time

t ≥ 0, we name them convergence parameters. The larger

the convergence parameters, the quicker the movements of the

individuals toward and about the centroid.

F. Constant Arrangement About the Centroid

The Lyapunov-like function and Lasalle’s invariance princi-

ple can be used to show that the swarm members can converge

to a constant arrangement about a stationary centroid. This

necessitates the inclusion of x∗ in a domain over which system

(9) remains continuous but is strictly Lyapunov stable.

Let

D :=

⎧⎪⎪⎨
⎪⎪⎩x ∈ R

2n :
n∑

i=1

n∑
j=1,
j �=i

βijRi(x)
Qij(x)

≥ 0

⎫⎪⎪⎬
⎪⎪⎭ .

Then since
n∑

i=1

n∑
j=1,
j �=i

1
Qij(x∗)

= −
n∑

i=1

n∑
j=1,
j �=i

2
(ri + rj)2

�= 0,

we have
n∑

i=1

n∑
j=1,
j �=i

βijRi(x∗)
Qij(x∗)

= 0 .

This shows that x∗ ∈ D. Moreover,

∂L

∂xi
(x∗) =

∂L

∂yi
(x∗) = 0 ∀ i ∈ N, (13)

with L(x) > 0 for all x ∈ D \ x∗, L(x∗) = 0, and L̇(x) ≤ 0
for all x ∈ D. Thus, we have found another set, given by

D ⊃ D(L), over which the function G in (9) is continuous.

That is, G ∈ C[D, R2n], for which L ∈ C1[D, R+] establishes

stability in the Lyapunov sense. Now, ∂L/∂xi and ∂L/∂yi,

given in (6) and (7), respectively, are simply made up of

polynomials and rational functions in xi and yi, with only

Qij appearing in the denominator, and are continuous in D.

Similarly, ∂2L/∂x2
i and ∂2L/∂y2

i are made up of polynomi-

als, if not constants, and rational functions in xi and yi, with

only Qij appearing in the denominator, and are continuous

in D. Thus, G ∈ C1[D, R2n]. This implies that G is locally

Lipschitz on D. Accordingly, letting L0 := L(x(t0)), t0 ≥ 0,

we have that the set

ΩL0 := {x ∈ D : L(x) ≤ L0}
is a positively invariant set with respect to system (9). It is

also compact because system (9) is Lyapunov stable, which

implies the boundedness of solutions over D. Let

E1 := {x ∈ ΩL0 : L̇(x) = 0}.

Then by LaSalle’s invariance principle, every solution starting

in ΩL0 converges to the largest invariant set contained in E1.

Now, the set of all equilibrium points of (9) is

E2 := {x ∈ D :
∂L

∂xi
(x) =

∂L

∂yi
(x) = 0, i = 1, . . . , n},

noting that x∗ ∈ E2 by (13). Then it follows easily that E2 =
E1 since

L̇(x) = −
n∑

i=1

{
μi

[
∂L

∂xi
(x)
]2

+ ϕi

(
∂L

∂yi
(x)
)2
}

= 0

if and only if, for x ∈ D,

∂L

∂xi
(x) =

∂L

∂yi
(x) = 0 ∀ i ∈ N.

Since each point in E2 is an equilibrium, E2 is an invariant

set. Hence, x(t) → E2 as t → ∞.

G. Size and Density of the Swarm

Given that a member i of the swarm resides in a disk

defined in (1), with radius ri > 0, we can follow the argument

by Gazi and Passino [19] to estimate the size and density

of the swarm in a stable arrangement, but without using

their assumption that the swarm members had to be squeezed

cohesively as closely as possible in an area (a disk) of

radius r, since Theorem 2 already provides this cohesiveness.

Indeed, since Theorem 2 establishes the practical stability of

system (9) in D(L), there is no collision between members

in D(L). Accordingly, between two members i and j, we

have ‖xi(t) − xj(t)‖ > (ri + rj), xi = (xi, yi), for all

time t ≥ t0 ≥ 0. Now, the safety areas are disjoint, so the

total area occupied by the swarm is π
n∑

i=1

r2
i . By Theorem 2,

given (λ,A), with 0 < λ < A, we have ‖x(t0) − x∗‖ < λ
implies ‖x(t) − x∗‖ < A for all t ≥ t0 ≥ 0. In such a

practical stability arrangement, where all the solutions of (9)

are bounded above by A > 0, we can therefore find a disk of

radius, say, p = p(A), around the centroid (xc, yc) such that

πp2(A) ≥ π

n∑
i=1

r2
i . From this we get pmin := (

n∑
i=1

r2
i )1/2,

a lower bound on the radius of the smallest circle which can

enclose all the individuals. It is clear that the swarm size will

scale with the size of the individual.

If we define the density of the swarm as the number of

individuals per unit area, and let it be ρ, then it is simple to

see that ρ is upper bounded, with ρ ≤ n/(π
n∑

i=1

r2
i ). Hence,

the swarm cannot become arbitrarily dense.

H. Swarming in the Presence of Fixed Obstacles

If a swarm encountered an obstacle in its path, how would it

behave? Nature provides instances of the resultant behaviors

– a flock of bird may split and then rejoin [18]; a swarm

of zooplankton Daphnia magna may swirl about a marker

[20], [21]; a bacterial swarm may increase their density in the

presence of antibiotics [22]; a school of fish may swirl [23].

World Academy of Science, Engineering and Technology 72 2012

1147



In this subsection, we aim to show that it is straightforward

to extend our model (9) to include fixed obstacles. For the

purpose of illustrating our method, we consider the simplest

obstacle, namely, a disk, which is a convex obstacle.
Let there be m ∈ N fixed obstacles modeled by disks

centered at (ok1, ok2), k = 1, · · · ,m, with radii rok > 0. That

is, ok :=
{
(z1, z2) ∈ R

2 : (z1 − ok1)2 + (z2 − ok2)2 ≤ r2
ok

}
.

For the avoidance of these fixed obstacles, we consider a

measurement of the distance between the ith individual and

ok:

Wik(x) :=
1
2

[
(xi − ok1)

2 + (yi − ok2)
2 − (ri + rok)2

]
.

Given some parameter αik > 0, i, k,∈ N, which we will

be our new obstacle avoidance parameter for fixed obstacle

avoidance, we define a new function,

Vi(x) = Li +
m∑

k=1

ωikRi(x)
Wik(x)

,

so that our new Lyapunov-like function for system (4) now

becomes

V (x) :=
n∑

i=1

Vi(xi),

which is clearly continuous and locally positive definite on the

domain

D(V ) :=

⎧⎪⎪⎨
⎪⎪⎩x ∈ R

2n :
n∑

i=1

n∑
j=1,
j �=i

Qij(x) > 0 and

n∑
i=1

m∑
k=1

Wik(x) > 0

}
,

noting that x∗ /∈ E(V ). Now, carrying out the same analysis

as in subsection III-C, we easily get, along a trajectory of

system (4),

V̇ (x) = −
n∑

i=1

[
μi

(
∂V

∂xi

)2

+ ϕi

(
∂V

∂yi

)2
]

= −
n∑

i=1

[
v2

i

μi
+

w2
i

ϕi

]
≤ 0,

for all x ∈ D(V ), in which we have used the same parameters

μi > 0 and ϕi > 0 to obtain new instantaneous velocities:

vi := −μi
∂V

∂xi
, and wi := −ϕi

∂V

∂yi
,

where

∂V

∂xi
=

∂L

∂xi
−

m∑
k=1

αikRi(x)
W 2

ik(x)
(xi − ok1), (14)

and
∂V

∂yi
=

∂L

∂yi
−

m∑
k=1

αikRi(x)
W 2

ik(x)
(yi − ok2). (15)

Then system (4) becomes the new gradient system

ẋ = G(x) = −H (∇V (x)), x0 := x(t0), t0 ≥ 0, (16)

It is clear that G ∈ C[E(V ), R2n]. Using the same method of

analysis as in subsection III-D, we can show that system (16)

is practically stable.

IV. COMPUTER SIMULATIONS

In our computer simulations, we used the RK4 method

to numerically integrate systems (9) and (16) to confirm the

emergent collective behavior of a sufficiently large number of

individuals governed by the systems. The system parameters

played the major role in inducing several emergent patterns

that are constant arrangements about the centroid.

A. Constant Arrangement about Centroid

Our first example (Figure 1) shows a convergence to a

constant arrangement about a stationary centroid, and the sec-

ond (Figure 2) a constant arrangement about a non-stationary

centroid. In our model, this emergent pattern can be obtained

if the cohesion parameters (γi > 0, i ∈ N) are the same for all

i, the coupling parameters (βij > 0, i, j ∈ N, i �= j) are the

same for all i and j, and the convergence parameters (μi > 0
and ϕi > 0) are the same for all i ∈ N.
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Fig. 1. Example 1: Convergence to a constant arrangement about
a stationary centroid. Here, there are n = 30 individuals, each with
bin size 10. The parameters, for all i, j ∈ N, are γi = 0.2, βij = 50,
and μi = ϕi = 0.1. The individuals are randomly positioned initially.
Their trajectories are shown in grey lines.

B. Swarming in the Presence of Obstacles

In this example, shown in Figure 3 (n = 21, and bin size is

8), individuals are attracted to each other from afar, avoid fixed

obstacles (m = 20) and appear to meander initially between

the obstacles before settling into a circular motion in a constant

arrangement about the centroid.

V. APPLICATION TO PLANAR MOBILE UNICYLE-LIKE

VEHICLES

In this section, we apply our method of developing the

Lagrangian swarm model to design the velocity controllers

of planar mobile unicycle-like robots. The ith vehicle’s set of
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Fig. 2. Convergence to a constant arrangement about a non-stationary
centroid whose path is shown by the thicker line. Here, there are
n = 30 individuals, each with bin size 10. The parameters, for all
i, j ∈ N, are γi = 2, βij = 50, and μi = ϕi = 1. The individuals
were randomly positioned initially. Their trajectories are shown in
grey lines.

Fig. 3. Whilst avoiding obstacles, the swarm eventually settles into
a circular orbit. The thicker line traces the path of the centroid.
The parameters, for all i, j, k ∈ N, are γi = 1, 50 ≤ βij ≤ 200
(randomized), ωik = 200 and μi = ϕi = 1. The individuals
and fixed obstacles, with random sizes, were randomly positioned
initially. Their trajectories are shown in grey lines.

kinematic equations, which involve the Cartesion position xi,

yi, and its orientation angle, θi are [24]:

ẋi = υi cos θi,
ẏi = υi sin θi,

θ̇i = ωi.

⎫⎬
⎭ (17)

We assume that the motion is governed by the combined action

of both the angular velocity ωi and the translational velocity

υi, and that υi is in the direction of the one of axes of the

vehicle. A negative υi means that the ith vehicle is reversing

along the opposite direction of the axis. A negative ωi means

that the ith vehicle is rotating clockwise.

In order to come up with some appropriate forms of the the

velocities, let us, for the moment also assume the existence of

a virtual length ω ≥ 0 originating from (xi, yi) and extending

in the direction of υi (see Figure 4). Then we we can consider

a more general system, which we recognize as a simple car-

like model:

ẋi = υi cos θi − ξωi sin θi,
ẏi = υi sin θi + ξωi cos θi,

θ̇i = ωi.

⎫⎬
⎭ (18)

We will analyze this general system with the aim to obtain

υi and ωi such that they do not depend on ξ. Then in such a

case, we can let ξ = 0 to get back the original system (17).

To ensure that the ith vehicle safely steers pass other

vehicles, we enclose it by a circle. By doing this, we are

essentially following a well-known technique in mobile robot

path-planning schemes wherein the robot is represented as a

simpler fixed-shaped object, such as a circle, a polygon or a

convex hull [25]. In our case, we can indeed take equation (1)

as the definition of our car-like robots. Accordingly, our system

consists of the robots Bi as members of a swarm, with ri = r
for all i ∈ N. The centroid of the swarm is given by (2).

Our objective is to design the translational velocities υi and

the angular velocities ωi such that robots are attracted to the

centroid as a cohesive and well-spaced swarm.

Θi

Νi
Ξ

Ωi

z1

z2

xi

yi ri

Fig. 4. The ith planar mobile unicycle-like vehicle.

A. Velocity Controllers for the Vehicles

Let us extend the definition of the independent variable from

xi = (xi, yi) ∈ R
2 to xi = (xi, yi, θi) ∈ R

3. Furthermore,

with x := (x1, . . . ,xn) ∈ R
3n, we can use Ri for the
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attraction to the centroid and Qij for inter-individual collision

avoidance. Then applying the Lyapunov-like function (5) to

system (18) over the domain

D(L) =

⎧⎪⎪⎨
⎪⎪⎩x ∈ R

3n :
n∑

i=1

n∑
j=1,
j �=i

Qij(x) > 0

⎫⎪⎪⎬
⎪⎪⎭ ,

we have, noting that ∂L/∂θi = 0 since L does not contain a

function of θi,

L̇(x) =
n∑

i=1

[
∂L

∂xi
x′

i +
∂L

∂yi
y′

i

]

=
n∑

i=1

[
∂L

∂xi
(υi cos θi − ξωi sin θi)

+
∂L

∂yi
(υi sin θi + ξωi cos θi)

]

=
n∑

i=1

[(
∂L

∂xi
cos θi +

∂L

∂yi
sin θi

)
υi

−ξ

(
∂L

∂xi
sin θi − ∂L

∂yi
cos θi

)
ωi

]
.

Accordingly, we can define the control laws as

υi := −Ki(x)
(

∂L

∂xi
cos θi +

∂L

∂yi
sin θi

)
, (19)

and

ωi := Mi(x)
(

∂L

∂xi
sin θi − ∂L

∂yi
cos θi

)
, (20)

where we want Ki and Mi to be some arbitrary positive

functions continuous over D(L) with the purpose to limit the

size of the velocities, and ∂L/∂xi and ∂L/∂yi are as defined

in (6) and (7), respectively. With these control laws, we have,

with respect to system (18),

L̇(x) = −
n∑

i=1

[
Ki(x)

(
∂L

∂xi
cos θi +

∂L

∂yi
sin θi

)2

+ξMi(x)
(

∂L

∂xi
sin θi − ∂L

∂yi
cos θi

)2
]
≤ 0.

Following the proof of Theorem 2, which relies only on

establishing that L̇(x) ≤ 0, we can therefore infer the practical

stability of the subsystem of system (18) made up of the first

two terms (that is, ẋi and ẏi). Hence, the vehicles, defined

by their positions (xi, yi), are cohesive about their centroid.

Their orientations are provided by the third term θ̇i.

To find an explicit forms of Ki > 0 and Mi > 0, we note

that

|υi| ≤ Ki

(∣∣∣∣ ∂L

∂xi

∣∣∣∣+
∣∣∣∣ ∂L

∂yi

∣∣∣∣
)

and

|ωi| ≤ Mi

(∣∣∣∣ ∂L

∂xi

∣∣∣∣+
∣∣∣∣ ∂L

∂yi

∣∣∣∣
)

.

Since the maximum translational velocities and the maximum

rotational velocities are

υmax := max
i∈N

|υi| and ωmax := max
i∈N

|ωi|,

we can easily get some appropriate forms of Ki and Mi. For

example, if ψ1 > 0 and ψ2 > 0 are constants, then

Ki :=
υmax

ψ1 + |∂L/∂xi| + |∂L/∂yi| , (21)

and

Mi :=
ωmax

ψ2 + |∂L/∂xi| + |∂L/∂yi| . (22)

These yield |υi| ≤ υmax and |ωi| ≤ ωmax, respectively.

Finally, we let ξ = 0 in system (18). This has no effect

on the controllers (19) and (20). Therefore, we get back our

original system (17) with the same controllers.

Note that by simply replacing ∂L/∂xi and ∂L/∂yi by

∂V/∂xi (equation (14)) and ∂V/∂yi (equation (15)), respec-

tively, in the controllers (19) and (20), we incorporate fixed

obstacle avoidance capability.

B. Example 1: Swarming in the Absence of Fixed Obstacles

In this example, we show how multiple planar mobile

unicycle-like robots swarm to eventually form a pattern in

which their velocities and orientation stabilize.

There are 15 vehicles. Each vehicle is represented as an

arrow, with the arrowhead showing the orientation θi, and

direction of motion, and enclosed in a virtual protective

circle of radius ri = 1.25. The initial positions, orientations

and velocities are randomized. The cohesion and coupling

parameters are γi = 1 and βij = 5, i, j ∈ N, respectively.

The maximum translation and angular velocities are both 2.

For the functions Ki shown in (21) and Mi in (22), we let

ψ1 = ψ2 = 1.

We numerically integrate system (17) using the RK4 method

to obtain Figures 5 to 8.
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Fig. 5. Example 1. The figure shows the initial orientations of the vehicles
and their subsequent trajectories which are given in grey. The thicker trajectory
is the trace of the centroid.
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Fig. 6. By t = 176, the vehicles’ velocities and orientation with respect to
each other have already stabilized as depicted in Figures 7 and 8.
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Fig. 7. Example 1. Stable translational velocities υi of the vehicles. Recall
that υmax = 2.

C. Example 2: Self-organized Oscillation

In this example with 5 vehicles, the vehicles eventually

oscillate about a fixed point (Figure 9). The cohesion and

coupling parameters are randomized with 0.1 ≤ γi ≤ 1
and 5 ≤ βij ≤ 10, i, j ∈ N, respectively. The maximum

translation and angular velocities are 1 and 2, respectively.

For the functions Ki shown in (21) and Mi in (22), we let

ψ1 = ψ2 = 1.

D. Example 3: Swarming in the Presence of Fixed Obstacles

In this example, the 15 vehicles considered in Example 1

now swarm in the presence of 10 fixed obstacles randomly

placed and of random sizes. The controllers used are (19)

and (20) but with ∂L/∂xi and ∂L/∂yi, replaced by ∂V/∂xi

(equation (14)) and ∂V/∂yi (equation (15)), respectively. The

obstacle avoidance parameters are αik = 10, i, k ∈ N. As
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Fig. 8. Example 1. Stable angular velocities ωi of the vehicles. Recall that
ωmax = 2.
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Fig. 9. Example 2. Part (a) shows the initial positions and orientations of
the vehicles. Part (b) shows that the emergent pattern is an oscillation about
a fixed point.
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shown in Figure 10, the vehicles successfully avoid these

obstacles as a swarm.
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Fig. 10. Example 3. By t = 730, the swarm has begun the successful escape
from the field of obstacles.

VI. CONCLUSION

Via a Lyapunov-like function, we developed a an attractive-

repulsive swarm model and showed that it is a gradient system

that is practically stable about the centroid. This implies that

we could get a congregation of individuals about their centroid,

forming cohesive and well-spaced swarms. Computer simula-

tions illustrate this basic feature of collective behavior, with

the associated parameters playing the major role in inducing

the emergent collective behavior. Further, we showed how the

basic model could be extended to include fixed obstacles.

We then applied the methods expounded in this article to

construct the velocity controllers of multiple planar unicycle-

like robots such that they move in a coordinated fashion with

respect to their centroid. The method is potentially applicable

to the pattern formation and find-path problem of collaborating

autonomous multi-agents.
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