32 research outputs found

    Novel compounds reducing IRS-1 serine phosphorylation for treatment of diabetes

    Get PDF
    Activation of various interacting stress kinases, particularly the c-Jun N-terminal kinases (JNK), and a concomitant phosphorylation of insulin receptor substrate 1 (IRS-1) at serine 307 play a central role both in insulin resistance and in beta-cell dysfunction. IRS-1 phosphorylation is stimulated by elevated free fatty acid levels through different pathways in obesity. A series of novel pyrido[2,3-d]pyrimidin-7-one derivatives were synthesized as potential antidiabetic agents, preventing IRS-1 phosphorylation at serine 307 in a cellular model of lipotoxicity and type 2 diabetes. (C) 2015 Elsevier Ltd. All rights reserved

    Identification and characterization of an auto-activating MEK kinase from bovine brain: Phosphorylation of serine-298 in the proline-rich domain of the mammalian MEKs

    No full text
    Mitogen-activated protein kinase kinases (MKKs or MEKs) are dual specificity tyrosine/threonine protein kinases that are activated by phosphorylation at two closely spaced serine residues (serines-218 and -222) by the c-mos and raf proto-oncogenes. This double phosphorylation is both necessary and sufficient for MEKs to activate the MAP kinase enzymes iii vitro. The specificity or regulation of in vivo signaling to the mammalian MEKs (MEK1 and MEK2) was recently reported also to involve the differential phosphorylation of a proline-rich peptide located between the MEK kinase-subdomains IX and X. Here we report the purification and characterization of an auto-activating protein kinase from bovine brain that phosphorylates serine-298 of the MEK1 and MEK2 proline-rich insert peptides. The auto-activation of the MEK-S298 peptide kinase is the result of an intermolecular phosphorylation el ent that can be prevented by the peptide substrate. The inactive kinase migrates on gel filtration as a 90 kDa protein, and after activation as a 43 kDa phosphoprotein. Incorporation of P-32[phosphate] into 40-42 kDa proteins on SDS-PAGE parallels the activation of the enzyme, and dephosphorylation by protein phosphatase 2Ac reverses the activation. SDS-PAGE renaturation assays show that the 40 kDa protein has the capacity to autophosphorylate, and exhibits kinase activity towards myelin basic protein after activation. Phosphorylation of purified bovine brain MEK or recombinant MEK1 by the auto-activated kinase does not activate the enzyme, and does not interfere with the in vitro raf-mediated MEK activation. We conclude that still unknown kinases may control the MAP kinase pathway by targeting MEK. (C) 1997 Elsevier Science Ltd

    Effect of Oxaliplatin, Olaparib and LY294002 in Combination on Triple-Negative Breast Cancer Cells

    No full text
    Triple-negative breast cancer (TNBC) has a poor prognosis as the therapy has several limitations, most importantly, treatment resistance. In this study we examined the different responses of triple-negative breast cancer line MDA-MB-231 and hormone receptor-positive breast cancer line MCF7 to a combined treatment including olaparib, a poly-(ADP ribose) polymerase (PARP) inhibitor, oxaliplatin, a third-generation platinum compound and LY294002, an Akt pathway inhibitor. We applied the drugs in a single, therapeutically relevant concentration individually and in all possible combinations, and we assessed the viability, type of cell death, reactive oxygen species production, cell-cycle phases, colony formation and invasive growth. In agreement with the literature, the MDA-MB-231 cells were more treatment resistant than the MCF7 cells. However, and in contrast with the findings of others, we detected no synergistic effect between olaparib and oxaliplatin, and we found that the Akt pathway inhibitor augmented the cytostatic properties of the platinum compound and/or prevented the cytoprotective effects of PARP inhibition. Our results suggest that, at therapeutically relevant concentrations, the cytotoxicity of the platinum compound dominated over that of the PARP inhibitor and the PI3K inhibitor, even though a regression-based model could have indicated an overall synergy at lower and/or higher concentrations

    Kinase pathways in chemoattractant-induced degranulation of neutrophils: the role of p38 mitogen activated protein kinase activated by Src family kinases

    No full text

    Preliminary results on the Effect of Spirulina (Arthrospira platensis) and thyme (Thymus vulgaris) on bacterial diversity in the caecum of rabbits

    No full text
    The partial results show that the inhibitory effect of Spirulina and Thyme - as food supplements at the concentrations used - can be detected separately and together on the investigated bacteria. When Spirulina and Thyeme are used together the combined inhibitory effect is less. The underlying mechanism requires further investigation

    Effect of Oxaliplatin, Olaparib and LY294002 in Combination on Triple-Negative Breast Cancer Cells

    No full text
    Triple-negative breast cancer (TNBC) has a poor prognosis as the therapy has several limitations, most importantly, treatment resistance. In this study we examined the different responses of triple-negative breast cancer line MDA-MB-231 and hormone receptor-positive breast cancer line MCF7 to a combined treatment including olaparib, a poly-(ADP ribose) polymerase (PARP) inhibitor, oxaliplatin, a third-generation platinum compound and LY294002, an Akt pathway inhibitor. We applied the drugs in a single, therapeutically relevant concentration individually and in all possible combinations, and we assessed the viability, type of cell death, reactive oxygen species production, cell-cycle phases, colony formation and invasive growth. In agreement with the literature, the MDA-MB-231 cells were more treatment resistant than the MCF7 cells. However, and in contrast with the findings of others, we detected no synergistic effect between olaparib and oxaliplatin, and we found that the Akt pathway inhibitor augmented the cytostatic properties of the platinum compound and/or prevented the cytoprotective effects of PARP inhibition. Our results suggest that, at therapeutically relevant concentrations, the cytotoxicity of the platinum compound dominated over that of the PARP inhibitor and the PI3K inhibitor, even though a regression-based model could have indicated an overall synergy at lower and/or higher concentrations
    corecore