379 research outputs found

    The impact of skills in probation work: A reconviction study

    Get PDF
    This article reports on the results of a quasi-experimental study of practitioners’ skills in probation work. Videotaped interviews were produced by a group of probation officers and analysed by researchers using a checklist designed to identify the range of skills used in one-to-one supervision. Reconviction rates were found to be significantly lower among those whose supervisors were assessed as using a wider range of skills. The article also reviews the recent history of research on practitioners’ skills in probation, and considers the implications of positive findings from this and other studies

    Embedding the affine complement of three intersecting lines in a finite projective plane

    Get PDF
    An (r, 1)–design is a pair (V, F) where V is a ν–set and F is a family of non-null subsets of V (b in number) which satisfy the following. (1) Every pair of distinct members of V is contained in precisely one member of F. (2) Every member of V occurs in precisely r members of F. A pseudo parallel complement PPC(n, α) is an (n+1, 1)–design with ν=n2−αn and b≦n2+n−α in which there are at least n−α a blocks of size n. A pseudo intersecting complement PIC(n, α) is an (n+1, 1)–design with ν=n2−αn+α−1 and b≦n2+n−α in which there are at least n−α+1 blocks of size n−1. It has previously been shown that for α≦4, every PIC(n, α) can be embedded in a PPC(n, α−1) and that for n>(α4−2α3+2α2+α−2)/2, every PPC(n, α) can be embedded in a finite projective plane of order n. In this paper we investigate the case of α=3 and show that any PIC(n, 3) is embeddable in a PPC(n,2) provided n≧14

    Detecting brute-force attacks on cryptocurrency wallets

    Full text link
    Blockchain is a distributed ledger, which is protected against malicious modifications by means of cryptographic tools, e.g. digital signatures and hash functions. One of the most prominent applications of blockchains is cryptocurrencies, such as Bitcoin. In this work, we consider a particular attack on wallets for collecting assets in a cryptocurrency network based on brute-force search attacks. Using Bitcoin as an example, we demonstrate that if the attack is implemented successfully, a legitimate user is able to prove that fact of this attack with a high probability. We also consider two options for modification of existing cryptocurrency protocols for dealing with this type of attacks. First, we discuss a modification that requires introducing changes in the Bitcoin protocol and allows diminishing the motivation to attack wallets. Second, an alternative option is the construction of special smart-contracts, which reward the users for providing evidence of the brute-force attack. The execution of this smart-contract can work as an automatic alarm that the employed cryptographic mechanisms, and (particularly) hash functions, have an evident vulnerability.Comment: 10 pages, 2 figures; published versio

    Spectral fingerprinting: microstate readout via remanence ferromagnetic resonance in artificial spin ice

    Get PDF
    Artificial spin ices (ASIs) are magnetic metamaterials comprising geometrically tiled strongly-interacting nanomagnets. There is significant interest in these systems spanning the fundamental physics of many-body systems to potential applications in neuromorphic computation, logic, and recently reconfigurable magnonics. Magnonics focused studies on ASI have to date have focused on the in-field GHz spin-wave response, convoluting effects from applied field, nanofabrication imperfections (‘quenched disorder’) and microstate-dependent dipolar field landscapes. Here, we investigate zero-field measurements of the spin-wave response and demonstrate its ability to provide a ‘spectral fingerprint’ of the system microstate. Removing applied field allows deconvolution of distinct contributions to reversal dynamics from the spin-wave spectra, directly measuring dipolar field strength and quenched disorder as well as net magnetisation. We demonstrate the efficacy and sensitivity of this approach by measuring ASI in three microstates with identical (zero) magnetisation, indistinguishable via magnetometry. The zero-field spin-wave response provides distinct spectral fingerprints of each state, allowing rapid, scaleable microstate readout. As artificial spin systems progress toward device implementation, zero-field functionality is crucial to minimize the power consumption associated with electromagnets. Several proposed hardware neuromorphic computation schemes hinge on leveraging dynamic measurement of ASI microstates to perform computation for which spectral fingerprinting provides a potential solution

    On the formation of black holes in non-symmetric gravity

    Get PDF
    It has been recently suggested that the Non-symmetric Gravitational Theory (NGT) is free of black holes. Here, we study the linear version of NGT. We find that even with spherical symmetry the skew part of the metric is generally non-static. In addition, if the skew field is initially regular, it will remain regular everywhere and, in particular, at the horizon. Therefore, in the fully-nonlinear theory, if the initial skew-field is sufficiently small, the formation of a black hole is to be anticipated.Comment: 9 pages, ordinary LaTex

    Reconfigurable Training and Reservoir Computing in an Artificial Spin-Vortex Ice via Spin-Wave Fingerprinting

    Get PDF
    Strongly-interacting artificial spin systems are moving beyond mimicking naturally-occurring materials to emerge as versatile functional platforms, from reconfigurable magnonics to neuromorphic computing. Typically artificial spin systems comprise nanomagnets with a single magnetisation texture: collinear macrospins or chiral vortices. By tuning nanoarray dimensions we achieve macrospin/vortex bistability and demonstrate a four-state metamaterial spin-system 'Artificial Spin-Vortex Ice' (ASVI). ASVI can host Ising-like macrospins with strong ice-like vertex interactions, and weakly-coupled vortices with low stray dipolar-field. Vortices and macrospins exhibit starkly-differing spin-wave spectra with analogue-style mode-amplitude control and mode-frequency shifts of df = 3.8 GHz. The enhanced bi-textural microstate space gives rise to emergent physical memory phenomena, with ratchet-like vortex training and history-dependent nonlinear fading memory when driven through global field cycles. We employ spin-wave microstate fingerprinting for rapid, scaleable readout of vortex and macrospin populations and leverage this for spin-wave reservoir computation. ASVI performs linear and non-linear mapping transformations of diverse input signals as well as chaotic time-series forecasting. Energy costs of machine learning are spiralling unsustainably, developing low-energy neuromorphic computation hardware such as ASVI is crucial to achieving a zero-carbon computational future

    Controlling spin pumping into superconducting Nb by proximity-induced spin-triplet Cooper pairs

    Get PDF
    Proximity-induced long-range spin-triplet supercurrents, important for the field of superconducting spintronics, are generated in superconducting/ferromagnetic heterostructures when interfacial magnetic inhomogeneities responsible for spin mixing and spin flip scattering are present. The multilayer stack Nb/Cr/Fe/Cr/Nb has been shown to support such currents when fabricated into Josephson junction devices. However, creating pure spin currents controllably in superconductors outside of the Josephson junction architecture is a bottleneck to progress. Recently, ferromagnetic resonance was proposed as a possible direction, the signature of pure supercurrent creation being an enhancement of the Gilbert damping below the superconducting critical temperature, but the necessary conditions are still poorly established. Here, we demonstrate that pumping pure spin currents into a superconductor in the presence of an external magnetic field is only possible when conditions supporting proximity-induced spin-triplet effects are satisfied. Our study is an important step forward for pure spin supercurrent creation, considerably advancing the field of superconducting spintronics

    Qualitative analysis of the contents of the anterior portion of the oesophagus from adult milkfish, Chanos chanos, captured in Pandan Bay from 10 May-June 1975

    Get PDF
    Qualitative analysis of food items in the anterior spiral portion of the oesophagus suggests that adult milkfish feed on both benthic and planktonic materials
    • …
    corecore