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ORIGINAL ARTICLE

The role of data analytics within operational risk management:
A systematic review from the financial services and energy sectors

Nikki Cornwella , Christopher Bilsona , Adrian Geppa , Steven Sterna and
Bruce J Vanstonea,b

aBond University, Gold Coast, Australia; bBangor University, Bangor, United Kingdom of Great Britain and Northern Ireland

ABSTRACT
Operational risks are increasingly prevalent and complex to manage in organisations, culmi-
nating in substantial financial and non-financial costs. Given the inefficiencies and biases of
traditional manual, static and qualitative risk management practices, research has progressed
to using data analytics to objectively and dynamically manage risks. However, the variety of
operational risks, techniques and objectives researched is not well mapped across industries.
This paper thoroughly reviews the emerging research area applying data analytics to oper-
ational risk management (ORM) within financial services (FS) and energy and natural resour-
ces (ENR). A systematic literature search resulted in 2,538 publications, from which detailed
bibliometric and content analyses are performed on 191 studies of relevance. The literature
is classified using a novel multi-layered framework, informing critical analyses of the analytics
techniques and data employed. Five core themes emerge, relevant to practitioners, research-
ers, educators and students across any sector: risk identification, causal factors, risk quantifi-
cation, risk prediction and risk decision-making. Generally, ENR studies focus on identifying
causal factors and predicting specific incidents, whereas FS applications are more mature
surrounding risk quantification. To conclude, the comprehensive review reveals areas where
further research is needed to advance ORM within and beyond FS and ENR, in pursuit of
improved decision-making.
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1. Introduction

From the mid-1990s, disruption to the economic,
financial and social environment from financial cri-
ses, corporate scandals, technological advancements
and catastrophic events shifted the practice of risk
management from a silo basis to an enterprise-wide
approach, referred to as enterprise risk management
(ERM) (Eryilmaz, 2018). ERM is “a systematic and
integrated approach to the management of the total
risks that a company faces” (Dickinson, 2001, p.
360). Standardised ERM frameworks, including by
COSO (2017) and ISO (2018), have seen risk man-
agement elevated beyond the financial services (FS)
sector (e.g. banks, insurance and superannuation) to
energy and natural resources (ENR) (e.g. oil and
gas, mining and power utilities), healthcare and not-
for-profits (Buehler et al., 2008). The frameworks
consolidate the core risk management activities of
identification, analysis, evaluation, treatment, com-
munication, monitoring and reporting. These activ-
ities traditionally involve manual processes, such as
periodic and sample-based audits, assurances, likeli-
hood-severity risk matrices and controls testing.
However, the reactive and subjective nature of these

approaches is limiting effective risk management
(McKinsey & Company, & Operational Riskdata
eXchange Association, 2017). Bromiley et al. (2015)
and Aven (2016) provide more comprehensive cri-
tiques of current practice. The COVID-19 pandemic
has highlighted these weaknesses, showcasing how
fast-paced and pervasive the consequences of risks
can be (Evans, 2020; McKibbin & Fernando, 2021).

In response, risk management is evolving to har-
ness the value of data analytics to gain timely
insights that inform risk-preventative policies, pro-
cedures, controls and early identification, ultimately
reducing the frequency and severity of operational
loss events. This advancement reflects the increasing
ubiquity of artificial intelligence in the prevailing
fourth industrial revolution (Akter et al., 2022).
Data analytics involves analysing varied data to gain
insights that support decision-making, and ranges
from simple to advanced (for details on statistical
learning see Venables and Ripley (2002) or Hastie
et al. (2009), and Chollet (2018) for machine and
deep learning). Risk professionals expect data ana-
lytics to transform the discipline from three key per-
spectives. First, an organisation’s internal data,
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supplemented with external data, will offer more sci-
entific and population-based risk assessments, as com-
pared to existing qualitative and sample-based
approaches that are biased by individuals’ experiences,
perceptions and tolerances (Aven & Flage, 2020;
Bromiley et al., 2015). Second, data-driven approaches
allow for continuous scanning of the changing risk
environment, compared to irregular and static assess-
ments with manual approaches (Peters et al., 2018).
Third, advanced analytics’ predictive power and abil-
ity to model complex relationships provides a for-
ward-looking approach (Aven, 2016). This will enable
risk management to become a “valued component of
decision-making” (Peters et al., 2018, p. 7) and drive
revenue, rather than being defensive and compliance-
focussed. Nateghi and Aven (2021) provide additional
commentary on data analytics’ contribution to
risk analysis.

Research applying data analytics to risk manage-
ment increased from the 1980s, and accelerated from
2012 (Aven & Flage, 2020). The application to finan-
cial risk management is prevalent, with studies esti-
mating credit scores and default probabilities, and
predicting bankruptcy (Leo et al., 2019). Non-financial
risks constitute a similarly large portion of studies. Of
these, global, country- or community-wide risks are
commonly researched, including natural disasters,
road traffic and transport risks, medical diagnosis and
disease prediction (Araz et al., 2020; Choi & Lambert,
2017). Numerous studies examine operational (non-
financial) risks at an organisational level, defined as
the “risk of loss resulting from inadequate or failed
internal processes, people and systems or from exter-
nal events” (Basel Committee on Banking Supervision,
2006, p. 144). Despite slight variations by industry,
operational risks generally include workplace safety;
system and equipment disruptions or failures; supply
chain risks; fraud and money laundering; and
improper or illegal business practices. This categorisa-
tion is supported by the loss event taxonomy for
banks in Basel II (Basel Committee on Banking
Supervision, 2006, pp. 305–307).

Contrary to financial risk management, oper-
ational risk management (ORM) is a new area with
relatively rudimentary and immature tools (Peters
et al., 2018). Major operational loss events (e.g.
Barings Bank rogue trader incident (Shevchenko,
2015)) and regulatory enquiries (e.g. Australian
Royal Commission into Misconduct in the Banking,
Superannuation and Financial Services Industry
(Hayne, 2019)) have raised the profile of non-finan-
cial risks. Resulting regulations have forced organi-
sations’ attention to non-financial risks (Peters
et al., 2018), which the COSO and ISO risk-agnostic
ERM frameworks broached. This has been exempli-
fied in banking and aviation, touting these heavily

regulated industries as having some of the most
advanced risk management (PwC, 2017; Sj€oblom
et al., 2013). Similarly, operational risk and environ-
mental, social and governance (ESG) regulatory
changes (e.g. European Commission Non-Financial
Reporting Directive (2014)) are affecting other
industries, including mining (KPMG, 2021). Given
ORM’s infancy and the outlook of ongoing regula-
tory change across industries, it is timely to take
stock of existing innovations, extrapolate previous
works to less mature industries undergoing trans-
formation and provide a clear trajectory for
researchers and industry to further enhance ORM.
This review focusses on the application of data ana-
lytics to ORM in the FS and ENR sectors, which are
disparate in ORM maturity and cover a range of
business processing-, system- and safety-based oper-
ational risk events across largely online versus phys-
ical environments.

This review uniquely compares findings from two
sectors. While previous reviews evaluate the use of
data analytics to manage a specific operational risk
event or in a specific industry (Table 1), none com-
prehensively review operational risk holistically
across a sector. Rather, they focus on a single oper-
ational risk (e.g. supply chain risk), or review data
analytics applied to a single industry from either a
broad optimisation (not risk management-specific)
or general risk management perspective (not ORM-
specific). Given these limitations, the diversity of
ORM literature utilising data analytics is not well
mapped regarding the breadth of risks analysed and
the techniques and data used, and the similarities
and differences between industries remain unknown.
Yet, consistent with the ERM paradigm, it is
important that operational risks are considered col-
lectively. Additionally, industry-agnostic ERM
frameworks and risk management professional
bodies (e.g. International Actuarial Association,
2021; Risk Leadership Network, 2021) have high-
lighted the value of extrapolating risk management
beyond single industries to learn from other sectors,
further motivating this review’s comparison between
FS and ENR.

Overall, this paper aims to investigate how and
what data and analytics have been used to manage
operational risks across the FS and ENR sectors, so
to identify avenues to advance ORM within these
sectors. In doing this, the paper makes three key
contributions. First, a novel multi-layered classifica-
tion framework is developed. It provides a much-
needed mechanism to meaningfully segment and
map the literature, in a way that is consistent with
fundamental risk management and data science
principles to ensure readers from both disciplines
benefit. The framework scaffolds critical analyses of
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the large variety of analytics techniques, variables
and data sources used across studies. These results
improve researchers’ and practitioners’ understand-
ing of the value of different techniques and data
types in a risk context, promoting future research.
Second, to our knowledge, this is the first systematic
review and bibliometric analysis of studies applying
data analytics to the array of operational risks across
the entirety of the distinct FS and ENR sectors. This
provides objective insights into the field’s progres-
sion across the two sectors. Third, reviewing the
research across FS and ENR – disparate in ORM
maturity and operating environments – reveals
where there are differences in their focus, as well as
similarities in how data analytics can be applied to
ORM. Five core research themes gleaned from the
literature encapsulate these similarities generalisable

across sectors, providing a platform for industries
with less mature ORM practices to advance.

Section 2 outlines the systematic methodology,
before the results and novel classification framework
are presented in Section 3. Five core research
themes are then derived in Section 4, before con-
cluding in Section 5.

2. Systematic literature review methodology

This review focusses on FS and ENR for several rea-
sons. Risk management has long been grounded in
FS, with researchers and practitioners largely con-
centrating on financial risks given they are more
easily quantified and directly impact financial insti-
tutions, critical to economic stability (Buehler et al.,
2008). Stringent and internationally-coordinated

Table 1. Comparison of previous literature review papers.
Review paper Risk event Industry Systematic Key limitation

Operational risk event-specific
Workplace safety
Araz et al. (2020) External natural or man-

made disasters
Various ✘

Shayboun et al. (2020) Occupational accidents Industrials – Construction ✘ Only 7 papers reviewed
Supply chain risk
Qazi et al. (2015) Supply chain risk Various �
Vishnu et al. (2019) Supply chain risk Various �
da Silva et al. (2020) Supply chain risk Various �
Fagundes et al. (2020) Supply chain risk Various �
Hosseini and Ivanov (2020) Supply chain risk Various � Only Bayesian Network

applications reviewed
Fraud and money laundering
Jans et al. (2010a) Fraud Various ✘ Papers up to 2009 reviewed
Ngai et al. (2011) Fraud Various � 1997-2008 papers reviewed
Palshikar and Apte (2013) Money laundering FS – Banking ✘
Industry-specific
FS
Aziz and Dowling (2019) Risk management generally

(credit, market, liquidity
and operational risks)

FS – Banking ✘

Dicuonzo et al. (2019) Risk management generally FS – Banking ✘
Leo et al. (2019) Risk management generally

(credit, market, liquidity
and operational risks)

FS – Banking ✘

Lackovi�c et al. (2020) Risk management generally FS – Banking ✘ Discussion paper
ENR
Shafiee et al. (2019) Fault diagnosis, early warning

detection and performance
optimisation

ENR – Upstream
oil and gas

� Business enhancement /
optimisation focus, not
risk management

Wu et al. (2019) Fault diagnosis, early warning
detection and performance
optimisation

ENR – Nuclear ✘ Business enhancement /
optimisation focus, not
risk management

Industrials
Akinosho et al. (2020) Resource planning, risk

management and logistics
Industrials – Construction � Only deep learning

applications reviewed; Not
solely risk
management focussed

Hegde and Rokseth (2020) Risk management generally Industrials �
Risk management generally (i.e. not limited to operational risk, nor an industry)
Choi and Lambert (2017) Risk management generally Various ✘ Only articles published in Risk

Analysis reviewed
Choi et al. (2017) Risk management generally Various ✘ Only articles published in IEEE

Transactions reviewed
Mi�si�c and Perakis (2020) Risk management generally Various ✘ Business enhancement /

optimisation focus
Nateghi and Aven (2021) Risk management generally Various ✘ Discussion paper – not

intended to be a review of
data analytics techniques
for risk analysis
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regulation (e.g. Basel Accords (Basel Committee on
Banking Supervision, 2006, 2010)) has led FS to
relatively advanced risk management (PwC, 2017).
Thus, it is valuable to review data-driven ORM
developments within the mature FS sector.
However, FS organisations operate in mostly online
and transaction-based environments.1 Hence, FS is
contrasted with a sector whose operating environ-
ment is characterised by manual labour and physical
asset-intensiveness, meaning workplace safety and
asset management are critical. ENR is selected to
broaden the review in this respect. Compared to
other safety-centric industries, mining and electricity
services report high fatality rates (Safe Work
Australia, 2020), which is poignant given the global
oil and gas exploration and production industry is
the third largest by revenue (IBISWorld, 2021).

A systematic literature review (SLR) is employed
to ensure objectivity and reproducibility (Figure 1)

(Linnenluecke et al., 2020). The search strategy
includes terms relating to the topic’s key aspects –
data analytics and risk management – and the focus
sectors. The terms reflect typical terminology used
in each sector, derived from preliminary reading
and discussions with academic and industry experts
(e.g. Hegde & Rokseth, 2020; KPMG US & The Risk
Management Association, 2018). For example, the
risk management-related search terms are not lim-
ited to operational risks since such terminology
tends to be specific to FS. The search strategy devel-
oped and validated by all authors is (“data analy�”
OR “machine learning” OR “big data” OR “artificial
intelligence” OR “business intelligence” OR “data
min�”) AND (“risk manag�” OR “risk analy�” OR
“risk framework” OR “risk decision” OR “operational
risk”) AND (“financial services” OR bank� OR
“financ� industry” OR “financ� sector” OR “energy”
OR “mining”). The largest databases containing

Figure 1. Process map for SLR methodology.
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peer-reviewed literature in the field, Scopus and
Web of Science, are searched and 2,538 referen-
ces retrieved.2

A two-staged cleaning process is performed, fol-
lowing inclusion and exclusion criteria (Appendix
A). Three authors independently verify this process
with discrepancies re-evaluated according to the cri-
teria, before reaching a consensus. This results in
156 references. An additional 35 references from
Google Scholar or cited by another article are
included as they fulfil the inclusion criteria. A final
total of 191 references are analysed.

Bibliometric analysis is conducted using the
Bibliometrix R package (Aria & Cuccurullo, 2017)
on 186 references – five are not available through
the package. Content analysis and manual classifica-
tion is performed on all 191 references.

3 Results

3.1. Bibliometric analysis

Research applying data analytics to ORM across FS
and ENR has progressively increased since 1999 and
more than doubled from 2018 (Figure 2). This tra-
jectory was likely motivated by major regulatory
changes and loss events triggering compliance obli-
gations and foregrounding the importance of effect-
ive ORM. For example, the surge from 2008 to 2010
followed the introduction of Basel II and new stand-
ards prioritising systematic risk management across
industries (COSO, 2004; ISO, 2009). Regulators and
practitioners also expanded their focus from finan-
cial to operational risks following the Global

Financial Crisis (GFC) and other major loss events
(Peters et al., 2018). Similarly, the rise from 2018
aligns to COSO and ISO framework updates,
impending regulatory emphasis on ESG (Hayne,
2019) and the data-driven transformation megatrend
(World Economic Forum, 2021). Despite recent
activity, the area remains in early development with a
large proportion of conference papers (40.3%) (Table
2) and only six publications with over 100 citations.
The most highly cited publication is Leveson (2004),
detailing Systems-Theoretic Accident Model and
Processes (STAMP).

3.2. Content analysis

Throughout the manual content analysis, a new
framework for classifying the literature applying
data analytics to ORM across FS and ENR is devel-
oped (Figure 3). It applies to studies developing or
implementing a specific model or framework; review
papers are considered separately. It extends Aven’s
(2016) dichotomous classification of the risk field to
neatly categorise and conceptualise the expansive
area. The framework’s five layers represent charac-
teristics fundamental to risk and data science and
are critical to understand and differentiate between
the core objective and features of studies. The first
layer is the study type – an empirical investigation
or development of a generic framework, theory or
model (Aven, 2016). The second layer – risk perspec-
tive – indicates the number of operational risks con-
sidered and the level of detail in which a study
views them. It is akin to the silo versus enterprise-
wide concepts introduced, yet is a three-level factor

Figure 2. Annual output of research applying data analytics to ORM, overlaid with key regulatory and loss events.
Note: The regulation and standard information (COSO, 2020; ISO, 2018; Kaplan Higher Education, 2019; Standards Australia, 1995) and major loss
events (Centers for Disease Control and Prevention, 2017; Kaplan Higher Education, 2019; Thomson Reuters, 2010) are obtained from various sources.
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– micro, multi-risk and macro. Micro studies con-
sider a single, highly specific risk event (e.g. floor
water inrush in a mine (Wu et al., 2011)). Macro
studies aggregate across an organisation or business
line (i.e. the category of operational risk is consid-
ered, rather than individual events) (e.g. a business
line’s total dollar-value of operational losses over a
given period (Mittnik & Starobinskaya, 2010)).
Multi-risk considers multiple specific events across
an organisation in detail (e.g. payment failures, finan-
cial exposure errors and regulatory/legal non-compli-
ances in a bank (Sanford & Moosa, 2015)). The third
layer – analytics objective – describes the objective of
the analytics techniques concerning the risk manage-
ment process – descriptive, diagnostic, predictive or
prescriptive (Gudivada, 2017). Descriptive and diag-
nostic analytics are reactive, backward-looking analy-
ses, providing insight into what happened and why.
Predictive analytics are proactive and forward-looking
and aid decision-making. Prescriptive analytics extend
this, aiming to prescribe the optimal decisions. The
final two layers relate to research methodology – ana-
lytics techniques and data inputs (discussed in Sections
3.2.2 and 3.2.3).

Figure 4 visualises the literature as per the frame-
work,3 and the following sub-sections analyse the
findings by layer.

3.2.1. Overview of study types and risk perspectives
Excluding academic and industry reviews, empirical
studies and generic framework developments are
represented equally. This reflects the main tasks in
the risk field: (i) using “risk assessments and risk
management to study and treat the risk of specific
activities” and (ii) performing “generic risk research
and development, related to concepts, theories,
frameworks… and models” (Aven, 2016, p. 1).

When further partitioned by risk perspective,
approximately 40% of studies are empirical investiga-
tions into micro risks in specific worksites, business

lines or organisations. Within ENR, equipment fail-
ures and safety-related loss events are most frequently
researched (Figure 5). Information security, cyber
attacks and fraud are the micro risk events of focus
in FS. Given the specificity of the risks and contexts
in empirical-micro studies, the methodologies and
findings lack generalisability to other risks and organ-
isations. Research developing generic frameworks to
manage micro risks (22%) seeks to overcome this,
but findings remain limited to specific risks.

Researchers have sought to understand the driv-
ers and interconnectivity of operational risk events
by incorporating multiple risks and technical, organ-
isational, social and environmental factors. Such
multi-risk perspectives are most prevalent in ENR
safety research, with some empirical investigations
(4%) into real-time monitoring and communication
systems for incidents on mine sites damaging peo-
ple, property or the environment (e.g. Haustein
et al., 2008; Sanchez-Pi et al., 2015). Yet, reflecting
its conceptual stage of development, generic frame-
works dominate multi-risk research (e.g. Moura
et al., 2017; Pence et al., 2019), constituting one-fifth
of the field. This represents a shift from reactive to
proactive, targeted management. Reason’s (1990)
system approach to human error and Swiss-cheese
model, and Rasmussen’s (1997) socio-technical risk
analysis (SoTeRiA)4, provide the theoretical founda-
tion to the perspective. Viewing operational risk
events in detail, yet in the whole, interconnected
organisation, aims to uncover the “upstream sys-
temic failures” which create conditions inducing
human errors (Reason, 2000, p. 768).

Fewer studies (15%) take a macro risk perspec-
tive, evenly split across study types. The majority of
these studies involve estimating banks’ operational
risk capital (e.g. Chavez-Demoulin et al., 2016;
Dutta & Perry, 2006), motivated by regulation pre-
scribing measurement methodologies5 that aggregate
operational risk to an organisational level (Basel

Table 2. Most Frequently Published Reference Types and Journals.
Frequency of reference types Frequently published journals

Reference Type Frequency Journal Frequency Ranka

Journal Article 89 Risk Analysis 10 - (Q1)
Conference Paper 75 Journal of Operational Risk 7 C (Q4)
Review Paper 7
Book Chapter 6 Computers in Industry 3 - (Q1)
Proceedings 3 IEEE Access 3 - (Q1)
Book 4 Journal of the Operational Research Society 3 A (Q2)
Editorial 2

186 Reliability Engineering and System Safety 3 - (Q1)

Safety Science 3 A (Q1)
Decision Support Systems 2 A� (Q1)

Expert Systems with Applications 2 C (Q1)
Process Safety and Environmental Protection 2 - (Q1)

Risks 2 B (Q2)

bold value signifies the total.
aThe journal ranks were sourced from the 2019 Australian Business Deans Council Journal Quality List published on 6 December
2019 (Australian Business Deans Council, 2019), as well as SCImago Journal Rankings as of July 2020 in brackets (SCImago, n.d.).
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Figure 3. Classification framework for literature applying data analytics to ORM.

Figure 4. Breakdown of literature applying data analytics to ORM in FS and ENR as per classification framework.
Note: Figure 4 is based on the classification framework assignment of 148 references. The remaining 43 references from the 191 selected for the SLR
were not included as they were not methodology papers that developed or implemented a specific model or framework, but rather they were aca-
demic or industry review papers and theoretical articles.
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Committee on Banking Supervision, 2006). Other
macro-empirical studies calculate an organisation’s
overall risk comparative to others in the industry
(e.g. Hajakbari & Minaei-Bidgoli, 2014; L. Wei
et al., 2019). Unlike micro and multi-risk perspec-
tives, macro approaches do not provide visibility of
the collection of operational risks facing an organ-
isation, their underlying drivers, nor inter-relation-
ships. This lack of interpretability restricts proactive,
targeted ORM.

3.2.2. Critical analysis of analytics techniques
Techniques across various model families are used
(Figure 3). Table 3 outlines their frequency, overall
and by risk perspective. The categorisation is based on
common statistical/data science (e.g. Hastie et al.,
2009) and quantitative risk modelling (McNeil et al.,
2015; Modarres et al., 2016) technique taxonomies.

Modern statistical and machine learning techniques
are employed most (65%), consisting of supervised
(37%) and unsupervised (28%) approaches. This broad
model family refers to algorithms based on statistical
learning theory that analyse and learn patterns in his-
toric (and typically higher-dimensional) data to make
inferences or predictions about unseen (future) data
(Hastie et al., 2009). Supervised learning, unlike
unsupervised, is guided by a dependent variable and
generally lends itself to prediction tasks. Decision trees
and artificial neural networks (ANNs) are used exten-
sively to predict the occurrence, type or severity of
micro risks, particularly in ENR. For example,
Mazumder et al. (2021) compare the performance of
tree-based methods at predicting oil and gas pipeline
failures based on equipment and environment specifi-
cations; Marquez et al. (2020) predict degradation of
LNG tank pumps to inform preventative maintenance
using an ANN on sensor data. In contrast, unsuper-
vised techniques use only independent variables to

organise or cluster data for descriptive or diagnostic
analyses. Association rule mining is prevalent to
extract frequent co-occurrences from incident data,
indicative of common incident precursors or causes
that can inform prevention strategies (e.g. Abbass
et al., 2020; Wu et al., 2015). Natural language proc-
essing (NLP) is often used to gain insights from
unstructured risk data but are limited by linguistic
ambiguity (Leidner & Schilder, 2010). Applications
include identifying key risks (e.g. Chu et al., 2020) and
data pre-processing to extract relevant factors from
free-text reports (e.g. Pence et al., 2020).

Traditional statistical techniques are applied in
approximately 15% of the literature. Rather than
identifying generalisable predictive patterns as in
machine learning, traditional approaches draw
population inferences from a sample based on prob-
ability theory (Bzdok et al., 2018). These methods
are dominant in banking, motivated by the Basel II
operational risk capital requirements. Underpinned
by the loss distribution approach (LDA), parametric
distribution fitting or semi-parametric extreme value
theory are primarily used to parameterise loss fre-
quency and severity distributions; copula functions
often define the dependencies between business lines
and risk types; and Monte Carlo simulation is typically
used to subsequently estimate the value-at-risk (capital
level) (Dutta & Perry, 2006). These techniques rely on
historic internal loss data, encompassing the loss
amount, business line, risk type and year, but they
generally do not consider related operational factors.
This reflects the high-level, descriptive and backward-
looking nature of these techniques, compared with the
detailed predictive orientation of modern statistical
and machine learning.

Within the family of probabilistic graphical mod-
els, Bayesian networks represent a substantial por-
tion (14%) of the data-driven ORM research. They

Figure 5. Frequency of empirical studies with a micro risk perspective by operational risk event category.
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are directed acyclic graphs that concisely represent
“the probabilistic dependencies between a given set
of random variables” (Nagarajan et al., 2013). Their
ability to simultaneously reason multiple interrelated
variables with complex dependence structures offers
an interpretable multi-risk (or system) approach.
Most studies employing Bayesian networks harness
their diagnostic capability, inferring contributing
factors and causal pathways of operational risk
events in FS (e.g. Mittnik & Starobinskaya, 2010;
Neil et al., 2009; Sanford & Moosa, 2015) and ENR
(e.g. O’Shea et al., 2015; Pence et al., 2020).
Researchers also use them for prediction, for
example, of accidents in power plants (Groth et al.,
2020), equipment faults in LNG production (Hassini
& Zouairi, 2011) and cyber threats (Abidemi et al.,
2014). While various structure (important variables
and dependencies) and parameter (conditional prob-
abilities) learning methodologies exist for Bayesian
networks, most studies in the field rely on expert
elicitation rather than raw data. This is time-con-
suming and manually demanding, and subjectivity
and bias associated with experts’ knowledge, experien-
ces and perceptions pervade, compromising the
objectivity and reproducibility of models. Nevertheless,
easily incorporating domain knowledge and expert
judgement is a unique advantage of the technique.
‘Soft’, qualitative aspects of an operating system, like

social and organisational factors, can be captured and
quantified, consistent with SoTeRiA (Sanford &
Moosa, 2012). Including system factors that are typic-
ally less quantifiable yet inherent to operational risk is
dominant in both FS (e.g. Sanford & Moosa, 2015)
and ENR (e.g. Pence et al., 2019) data-driven ORM
models, and reflects topical culture and conduct risks
(Ocelewicz et al., 2021).

Although applied infrequently (4%), probabilistic
risk assessments (PRA), encompassing fault and event
trees, are used in ENR safety and reliability analysis
for descriptive and diagnostic understanding (e.g. Guo
et al., 2017). Through deductive- and inductive-logic,
they represent faults leading to an undesired event
and consequences following an initiating event as tree-
like graphs (Mohaghegh et al., 2009). Traditional PRA
methods inform controls to minimise system hazards.
However, the linear interactions limit their effective-
ness in analysing complex non-linear systems.
Moreover, PRA is restricted to failures identified in
past events, rather than considering influences in the
broader operating system (Leveson, 2004).

Despite wide use in operational risk analytics,
expert systems are not prevalent in the studies
reviewed in this SLR (2%), with system dynamics
(Forrester, 1961) and analytics hierarchy process
(Saaty & Peniwati, 2008) most frequently applied.
This primarily relates to the review’s focus on more

Table 3. Frequency of analytics techniques used in literature applying data analytics to ORM by risk perspective.

TOTAL

Risk perspective

Model family Technique Micro Multi-risk Macro

Supervised learning – modern statistical & machine learning 60 50 7 3
Decision Tree 17 12 2 3
Artificial Neural Networks 15 13 2
Logistic Regression 7 6 1
K-Nearest Neighbours 5 5
Random Forest 5 5
Support Vector Machines 5 3 2
Evolutionary Algorithms 3 3
Fuzzy Decision Tree 2 2
Least Squares Regression 1 1

Unsupervised learning – modern statistical & machine learning 45 25 15 5
Association Rule Mining 19 11 7 1
Natural Language Processing 9 1 5 3
Clustering – unspecified 6 4 1 1
Clustering – K-Means 5 3 2
Process Mining 3 3
Fuzzy Clustering 2 2
Self-Organising Maps 1 1

Traditional statistical techniques 25 9 2 14
Parametric Distribution Fitting 8 2 6
Monte Carlo Simulation 5 1 4
Fuzzy Theory / Rough Sets 4 4
Extreme Value Theory 3 1 2
Other 3 2 1
Copula Method 2 1 1

Probabilistic graphical models Bayesian Networks 23 8 8 7
Probabilistic risk assessment 6 2 4

Event Trees 3 1 2
Fault Trees 3 1 2

Expert systemsa Primarily rely on expert elicitation 3 3

Note. The frequency of each technique in the table is calculated as the number of studies employing that specific technique, such that studies utilis-
ing multiple techniques are counted for each relevant technique. The table summarises the techniques from 134 references. The remaining 57 refer-
ences from the 191 selected for the SLR were not included as they did not use data analytics techniques (e.g. academic or industry review papers
and theoretical articles) or there was insufficient information about the modelling techniques employed.
aThe expert systems techniques used in the literature consist of expert elicitation, system dynamics and analytic hierarchy process.
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automated and objective analytics approaches,
driven by raw operational data. By contrast, expert
systems methodologies often rely on expert ratings,
or if primary or secondary data sources are used,
experts play a key role in development.

Hybrid approaches are also used, sometimes
spanning multiple model families. They allow the
technique most suitable for each analytics objective
within the overall task to be used, improving pre-
dictive accuracy (e.g. Ahmed & Abraham, 2015).

Combining traditional judgement-based approaches
(PRA and expert systems) with more advanced
mathematical models (e.g. Bayesian networks)
enhances the application of each method. Pence
et al.’s (2019) integrated-PRA framework (refined in
Pence et al. (2020)) integrates text mining for pre-
processing, Bayesian networks, fault and event trees
and simulation to quantify the influence of organ-
isational attributes on risk scenarios and determine
critical root causes of failure.

Table 4. Summary of data inputs and variables in the literature.
Category Data input / Variable Frequency

Risk, Incident and Loss Time and/or Date 21
Consequence
Severity (loss amount, treatment cost, days lost, categorical rating) 19
Type (monetary, injury, disability, death) 18

Unstructured Textual Incident, Safety or Operational Reportsa 15
Cause 11
Loss Frequency 11
Event Logsb 9
Audit / Investigation Reports 6
Activity associated with Event 5
Response / Mitigating Actions 4
Risk Level 3
Personnel Affected 2

Technical System Geospatial Data 21
Worksite Location
Personnel Location
Equipment Location
Traffic Density

Equipment Type 10
Meteorological Conditions 10
Information System Event Log 8
Pressure 8
Temperature 8
Gas / Fuel Level 7
Equipment Age 6
Process Duration 6
Transaction Log 6
Geological Conditions 5
Bearing Vibrations 4
Hazardous Substance Involved 4
Internet Traffic 4
Compliance to Safety Practices 3

Organisational Structure Role 10
Business Line 5
Firm Size 3
Analytical Capability 2
Industry 2
Management Control 2
Safety Policy, Training and Culture 2
Financial Performance 1

Social / People Age 5
Gender 4
Safe Behaviour 4
Experience / Tenure 2
Performance / Proficiency 2
Qualification / Education 2

Environmental Country 2
Economy 2
Commodity Market Price 2
Exchange Rate 1
Employment Rate 1

Political Pressures 1
Regulatory Environment 1
Season 1

Note: The list of variables in the table is not exhaustive of those used in the literature, nor is it representative of the entire 191 pub-
lications included in the SLR. It is an overview of the most commonly employed variables across key studies.
aUnstructured textual reports may contain the information of the other risk, incident and loss variables in the table. However, these
reports are considered as a separate data input as some studies use incident, safety and operational reports as their key input. The
other loss variables are likely retrieved from structured event logs and databases.
bEvent logs likely contain the information of other risk, incident and loss variables in the table, such as Time, Consequence, Cause,
Response and Personnel Affected. However, event logs are listed as a separate data input as some studies do not specify the indi-
vidual variables or use them as the key data input.
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3.2.3. Critical analysis of data
A wide variety of data sources are used with variables
relating to five categories (Figure 3) – risk, incident
and loss data; technical system factors; organisational
structure factors; social or people factors; and environ-
mental factors. These categories correspond to key
risk theories (Rasmussen, 1997; Reason, 1990) and
data collected to comply with regulation or standards
(e.g. ISO 14224:2016). Table 4 summarises the most
frequent variables.

Loss data are collected and used to estimate
banks’ operational risk regulatory capital, as per the
Basel accords (2006). This historical data on oper-
ational losses and near-misses includes timing, loss
amount, event type, cause and consequence descrip-
tions. Similar information is collected for incidents
in ENR organisations, along with the associated
business activity, mitigating actions and personnel
affected (e.g. G€uven et al., 2016; Silva & Jacinto,
2012). Loss data typically constitute the dependent
variable, providing past events to learn from. Events
are recorded in structured databases, such as gov-
ernance, risk and compliance or enterprise resource
planning systems, or unstructured textual incident
or operational reports.

Technical system factors measure or explain the
technical features or operating conditions of system
components, including equipment, information sys-
tems and the physical environment. Such factors are
predominantly used in ENR settings. Often a scien-
tific fact or operational link relates the variable to
an incident, motivating its inclusion. Additionally,
socio-technical systems theory (Rasmussen, 1997)
reinforces incorporating technical system aspects
into risk analysis. ENR equipment (e.g. power plants
(Groth & Bensi, 2018)) are commonly monitored
through metrics like pressure, temperature and bear-
ing vibrations, as well as maintenance records.
Geospatial, geological or meteorological data (e.g.
Middleton & Sabeur, 2011; Wu et al., 2011) capture
the physical environment. Research in FS considers
technical factors like system access and traffic (e.g.
Nagashree et al., 2018; Urabe et al., 2011), database
queries (e.g. Fedushko et al., 2020) and transactions
(e.g. Liu & Liu, 2016).

Organisational structure characteristics encapsulate
management, governance structures and business pro-
cedures. Structural and cultural organisational aspects,
including policies and the tone from executives, influ-
ence risk culture and thus incident occurrences,
rationalising consideration of these factors
(Mohaghegh et al., 2009). Personnel role and business
line most frequently capture organisational structure
across both FS and ENR applications (e.g. Sanchez-Pi
et al., 2014). Variables gauging overall organisational
performance are also considered, including financials

and analytical capability (e.g. Embrechts et al., 2018).
Some studies investigate the extent and effectiveness
of management control and communication (e.g.
Leveson, 2004; Moura et al., 2017). Organisational
structure factors are commonly surveyed from experts,
given their largely subjective and qualitative nature.

As per socio-technical systems theory
(Rasmussen, 1997), social and people aspects of
organisations and risk scenarios are important
considerations. Understanding the interactions
between people and technical processes within
complex systems can inform system breakdowns
and accidents (Rasmussen, 1990). Various varia-
bles can proxy human behaviour. Generic attrib-
utes, like age and gender, are used to proxy
personality, responsibility and experience (e.g.
Neil et al., 2005; Persona et al., 2006). Other
research includes measures of skill – tenure, quali-
fication and performance metrics (e.g. Amoako
et al., 2020; Moura et al., 2017). In ENR-focussed
studies, compliance with safety policy and training
measure safe workplace behaviour (e.g. Moura
et al., 2017; Xiaoyun & Danyue, 2010).

Environmental variables aim to incorporate fac-
tors external to the organisation that may influence
the operational environment and thus risks. Studies
consider country, macroeconomic indicators, polit-
ical uncertainties and regulatory pressures (e.g.
Eckle & Burgherr, 2013; Peters et al., 2009).
Research only incorporates these minimally, rather
focussing on the aforementioned internal factors
organisations can control.

No study considers variables from all five data
input categories simultaneously (Figure 6). Relatively
few studies (7.1%) incorporate variables from a com-
bination of four categories. Approximately 70% use
only loss data, technical system factors or both.
Therefore, there is scope to expand the factors
included in a study, particularly given evidence of
complex interrelationships between technical, social
and organisational factors (e.g. Onoda et al., 2009).
Furthermore, studies using only loss event data,
without considering the factors and conditions for
non-events (normal operating conditions), provide
imbalanced views of the operating environment and
hence questionable conclusions.

Data are generally collected from individual organi-
sations; national or regulatory authorities, industry
associations or consortia, that pool data from partici-
pating organisations across an industry or country; or
public data sources, such as news providers, social
media and financial reports. Subject matter experts are
a highly utilised source of information, identifying
risks and causal factors, defining dependencies and
parameterising probabilities, particularly for Bayesian
networks, PRA and expert systems. In such cases,
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research succumbs to the variability of experts’ experi-
ences and inherent human biases in risk assessment.
For example, experts may not have experienced many
operational loss events, nor the range of business
processes. However, internal loss data only capture the
sample of events reported historically, overlooking
those not reported. Some studies use synthetically gen-
erated data, particularly for proof of concept
(Mazumder et al., 2021). Study type and risk perspec-
tive also influence the data source to an extent. For
example, empirical-micro studies typically use data
from an organisation, whereas generic-macro studies
often use industry data.

4. Research themes

Review of bibliometric and content analyses (Section
3) revealed five core themes, segmenting how data
analytics is used for different purposes in managing
operational risks across FS and ENR organisations.
The themes are:

(i) risk identification (11%)6;
(ii) causal factors (25%);
(iii) risk quantification (17%);
(iv) risk prediction (21%); and
(v) risk decision-making (6%).

The prevalence of these themes differs for FS and
ENR. Within each theme, there are several use cases
or perspectives researchers take in achieving the
theme’s overall objective, which are presented as
sub-themes. Each sub-theme is generally character-
ised by studies of a particular type, applying particu-
lar risk perspectives, analytics objectives, techniques
and data inputs. To link the themes with the classi-
fication framework (Figure 3), (a) the following dis-
cussion and Tables 5–9 present the typical
composition of studies as per the classification
framework and sector(s) of focus in the literature;

and (b) shading the breakdown of the literature as
per the classification framework (Figure 4) high-
lights the portion of studies pertaining to each
theme. Concluding each of the next sub-sections are
critical analyses and future directions.

4.1. Theme I: risk identification

A group of FS and ENR empirical-micro studies and
generic-macro frameworks leverage past public or
organisational data to describe and identify key
risks. These serve as horizon-scanning tools for risk
managers by efficiently synthesising huge volumes
of information – substantially more than humanly
possible in manual document-based reviews – to
objectively identify cases requiring attention. Used
in both FS and ENR, NLP over textual data sources
(e.g. news articles (e.g. Chu et al., 2020), financial
statements (e.g. Wei et al., 2019) or risk and audit
reports (e.g. Arumugam et al., 2016)) automatically
distils current and emerging risks into a taxonomy.
Arumugam et al. (2016) showcase this in their
empirical-micro study, performing descriptive ana-
lytics with k-means clustering on risk phrases
extracted from reports of offset wells using NLP to
streamline well drilling planning and execution.

A difference for FS is that, further to text mining
risks, studies on banks and insurers have also identi-
fied risks through anomaly detection and conform-
ance checking. Anomaly detection mechanisms
using unsupervised techniques on internal records
alert risk managers to suspicious transactions (e.g.
Palshikar & Apte, 2013) or customers (e.g. Xiaoyun
& Danyue, 2010). Process mining, comparing his-
toric workflow logs with process blueprints, high-
lights non-conformances (e.g. Huang et al., 2012).
Table 5 presents more detail.

Figure 6. Frequency of the number of data input categories used simultaneously in research.
Note: Figure 6 reports the percentage of studies that use data from one, two, three or four categories of input data, with the three most highly uti-
lised combinations of data input categories called out.
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4.2. Theme II: causal factors

A quarter of the literature aims to diagnose the fac-
tors contributing to operational loss events.
Although applied to information security vulnerabil-
ities in financial institutions in a few studies (e.g.
Lien, 2012), causal factors research mostly relates to
safety and equipment failure incidents within ENR
(e.g. Milana et al., 2019; Onoda et al., 2009). This
application is revolutionising manual root cause and
failure pathways analyses traditionally completed in
safety-critical industries in pre-project planning,
post-incident reviews or general risk management
functions at infrequent intervals. Applying diagnos-
tic analytics across multiple disparate data streams
efficiently provides risk managers with more scien-
tific and detailed understandings of the factors lead-
ing to incidents. Ultimately, they inform policy,
training, maintenance and other operational deci-
sions, yielding safe and successful operations
(Stojadinovic et al., 2012). For example, Leite’s
(2019) empirical-micro-diagnostic analysis using
logistic regression on hydropower plants’ technical
data (system monitoring, maintenance and perform-
ance) identifies factors that significantly indicate
longer shutdown periods – factors helpful to opera-
tors in prioritising inspections and reducing sys-
tem downtime.

Causal findings are often very context-specific as
most studies are empirical-micro investigations,
applying statistical and machine learning techniques
to loss and technical systems data for specific inci-
dents in ENR or FS. Another example is Dong et al.
(2019) using k-means clustering and simulation to
assess the factors that heighten the likelihood of
residential transformers overloading in electricity
distribution. Table 6 presents more detail.

Alternate to this micro risk perspective and focus
on technical system factors in ENR and FS, a por-
tion of the causal factors literature is distinct to
ENR – developing generic multi-risk frameworks for
site safety, underpinned by systems theory (Reason,
1990) and SoTeRiA (Rasmussen, 1997). These
Bayesian network or hybrid models (e.g. Pence
et al., 2020; Rodriguez-Ulloa, 2018) show that
human errors do not occur randomly but are linked
to system factors with complex interrelationships.
This highlights the value of incorporating multiple
risks and factors (technical system, social, organisa-
tional or environmental) into a single model. A
noteworthy contribution is the spatio-temporal
simulation module within Pence et al.’s (2019) inte-
grated-PRA framework, which seeks to progress
traditional, static PRA to dynamic analysis, consid-
ering temporal and spatial dimensions. There is
opportunity to advance data-driven causal factors
analyses to be live, continuous and consider

dependencies across a large range and volume of
data sources. While work is needed to fully oper-
ationalise this, currently ENR is more advanced
than FS. Causal analysis approaches applied in ENR
contexts should be investigated for FS to gain
insight into the underlying factors driving loss
events, rather than simply quantifying risk levels.

4.3. Theme III: risk quantification

Some studies quantify operational risk to assess
inherent and residual risk levels and compare them
with risk appetite. In both FS and ENR, quantifica-
tion methodologies broadly involve combining esti-
mates of the frequency and severity of events.
Several empirical- and generic-micro studies apply
descriptive analytics with PRA or Bayesian theory to
calculate the value of potential losses throughout the
oil and gas supply chain (e.g. Eckle & Burgherr,
2013). In Hamedifar et al. (2015), empirically quan-
tifying the frequency, consequences and thus total
risk of loss of containment from LNG carriers using
PRA on marine traffic, ship operational and environ-
mental data enables quantitative analysis of cost-effect-
ive risk reduction strategies. Risk quantification,
however, is most commonly applied to estimate capital
in the banking sector, strongly motivated by regulation
(e.g. Dutta & Perry, 2006).

Specific to FS, capital estimation methodologies,
driven by traditional LDA or Bayesian networks,
mostly take macro perspectives (Table 7), aligning
to the Basel II standards (e.g. Chavez-Demoulin
et al., 2016; Mittnik & Starobinskaya, 2010). These
aggregate approaches lack risk sensitivity by not
explicitly considering individual risks, nor related
operating factors. Therefore, capital estimations are
not as sensitive to fluctuations in the profile of dif-
ferent operational risk events, nor the state of the
underlying risk drivers. Yet even studies that only
consider dependencies between aggregated groups
(operational risk types and business lines) find ava-
lanche-like effects occur from high levels of depend-
encies (Mittnik & Starobinskaya, 2010). Adopting a
multi-risk perspective using Bayesian networks, and
incorporating the causal factors, provides greater
transparency of such effects (e.g. Sanford & Moosa,
2015). It is more holistic and proactive as it models
“uncertainty about the process that generates losses
as well as the distribution of losses that might
result” (Neil et al., 2005, p. 971). This allows finan-
cial institutions and regulators to understand what
is driving capital levels, and thus ways to better
mitigate risks, in turn reducing capital requirements.

While the capital regulations driving risk quanti-
fication are unique to FS, ENR could consider the
FS capital estimation approaches that measure the
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likelihood and consequences of operational risks on
a continuous scale to yield more precise indicators
of their changing risk profile. The multi-risk quanti-
fication techniques may be particularly relevant in
the large-scale and complex socio-technical operat-
ing environments of ENR organisations, essentially
offering more precise quantification of causal fac-
tor analyses.

4.4. Theme IV: risk prediction

Over one fifth of the literature predicts aspects of
micro operational risks, including the type of risk
events imminent, the timing, probability or severity.
As an indicative example, Yin et al.’s (2021) empir-
ical-micro investigation predicts gas kick events in
deepwater drilling earlier than traditional methods
using a long short-term memory ANN on sensor
data. Risk prediction is most prominent in ENR,
with studies predicting safety hazards, accidents,
equipment failures and maintenance requirements
(e.g. Li et al., 2020; Xie et al., 2019). Across FS,
information security risks and fraud detection are
the foci (e.g. Abidemi et al., 2014; Jans et al.,
2010b). Regardless of industry, risk prediction is
considered from two subtly different perspectives
(Table 8); yet all empirically investigate various
supervised statistical and machine learning

techniques or Bayesian networks. No technique is
definitively the best in either sector, attesting to the
application-specific nature of studies and lack of
common evaluation metrics.

Predictive risk algorithms are particularly valu-
able when implemented at the first line of defence7,
meaning personnel “on-the-ground” get access or
alerted to context-sensitive risk information to effi-
ciently inform decision-making and prevent inci-
dents. Sanchez-Pi et al. (2015) exemplify this,
developing an early warning detection system for
offshore oil extraction and processing. Powered by
association rule mining across spatial, temporal and
technical data, it predicts risky scenarios given
employees’ locations and organisational roles and
notifies them in real-time.

Most risk prediction applications relate to inci-
dents observed relatively frequently, learning from
past known occurrences. A smaller body of research
aims to predict rare or even unseen events by track-
ing factors in the system over time (Urabe et al.,
2011) or combining expert knowledge with machine
learning (Milkau & Bott, 2018). However, further
innovations are required to model unknowns, given
complexities surrounding data limitations. The
extreme infrequency of unknown unknowns means
a much larger sample of data is needed in order to
model these events with existing techniques, and yet

Table 5. Research perspectives in theme I: risk identification.
Theme I: risk identification

Research
perspective
[Focus sector] Description and findings Study type

Risk
perspective

Analytics
objective

Analytics
techniques Data Inputs

Text Mining Risks
[FS, ENR]

� Identify risks and construct
risk taxonomies and registers
for organisations and
industries by using text
mining techniques

� Automatic text mining
methods found effective and
efficient at identifying current
and emerging risks

� Textual data sources may
present biases towards high
severity, low frequency
incidents; publicly disclosed
information; or organisations
with high press coverage

Empirical
Investigation

Micro
Macro

Descriptive Natural
Language
Processing

� News Articles (Chu
et al., 2020; Leidner &
Schilder, 2010; Nugent
& Leidner, 2017)

� Financial Statements (L.
Wei et al., 2019)

� Internal Risk and Audit
Reports (Arumugam
et al., 2016; Satoh &
Samejima, 2019)

Anomaly
Detection [FS]

� Identify outliers and monitor
deviations from normal
operating conditions, thus
highlighting higher risk cases
(e.g. customers or
transactions)

Generic
Framework

Micro Descriptive Clustering � Customer Records
(Xiaoyun &
Danyue, 2010)

� Transaction Records and
Suspected Money
Laundering Case
Reports (Palshikar &
Apte, 2013)

Auditing and
Conformance
Checking [FS]

� Identify non-conformances of
information systems and
processes and highlight areas
for process improvement

� Greater depth of audit
analyses and less resource-
intensive and invasive for
personnel than
traditional audits

Generic
Framework

Micro Descriptive Process Mining
(Caron et al.,
2012, 2013;
Huang et al.,

2012)

� Actual Workflows from
Information System
Event Logs

� Business Process
Blueprints and Rules
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a lack of data remains on these cases; hence there
are still open questions.

4.5. Theme V: risk decision-making

All studies in the field intend to inform risk deci-
sion-making to some extent, but a small number
spanning both FS and ENR aim to primarily pre-
scribe the optimal decision. This is approached from
two perspectives (Table 9). First, automated risk
decision-making systems are explored conceptually,
calculating the optimal mitigation strategy and
resource allocation based on reward maximisation
techniques (El Bouchti et al., 2017; Rahmes et al.,
2013). For example, Rahmes et al.’s (2013) generic-
macro framework applies prescriptive analytics
through game theory analysis (combining probabil-
istic event predictions from decision trees and event
sentiments derived from NLP on historical records
of reactions) to populate reward matrices for the
most efficient and effective allocation of resources.
Second, more holistic, qualitative frameworks for
applying data analytics to ORM that ultimately
inform risk decision-making are developed (e.g.
Groth & Bensi, 2018), consisting of a similar structure
– (i) data management architecture integrating dispar-
ate data sources, (ii) a model-building module aligned
to the risk management objective and (iii) interpret-
ation and visualisation of results. Progression towards
autonomous risk decision-making systems is in its
infancy for FS and ENR. As organisations in these sec-
tors navigate digital transformation, while maintaining

compliance in increasingly regulated environments, it
is critical future methodologies are transparent to
ensure risk managers, executives and regulators have
visibility over the workings, bolstering confidence in
the approach.

5. Discussion and conclusions

Analysing the literature applying data analytics to
ORM across the FS and ENR sectors has highlighted
several key distinctions and similarities in their
approaches. The following summarise these by the
components of the literature classification framework.

Risk perspective: Overall, there is a high concen-
tration of empirical and micro studies, limiting the
generalisability of findings to other contexts,
although methodologies may be transferrable. This
is particularly evident among the ENR literature,
with most studies either investigating the causal fac-
tors of or predicting specific safety incidents or
equipment faults. In comparison, a larger propor-
tion of FS research employs a macro perspective,
analysing operational risk as a holistic category.
Although, some FS operational risks, including
fraud and information security threats, lend them-
selves to micro diagnostic or predictive analyses.
Across both sectors, research from a multi-risk per-
spective remains largely theoretical and qualitative,
with the instances of quantitative approaches relying
on subjective data elicited by experts (e.g. Pence
et al., 2020; Sanford & Moosa, 2015). Yet the
COVID-19 pandemic showcases how a single event

Table 8. Research perspectives in theme IV: risk prediction.
Theme IV: risk prediction

Research
perspective
[Focus sector] Description and findings Study type

Risk
perspective

Analytics
objective Analytics techniques Data inputs

Prediction by
Monitoring Causal
Factors
[ENR]

� Monitor conditions of
critical causal factors
identified from
diagnostic analysis as a
form of early warning
risk detection, often
embedded in
notification systems

Empirical
Investigation

Micro
Multi-risk

Diagnostic
Predictive

� Association Rule Mining
(Fang et al., 2017;
Nagashree et al., 2018;
Sanchez-Pi et al.,
2014, 2015)

� Anomaly Detection
(Haustein et al., 2008)

� Loss
Event Data

� Technical
System Data

Single Risk
Prediction
Model [ENR]

� Identify causal factors
and predict risk events
using a single
technique

Empirical
Investigation

Micro Predictive � Bayesian Networks
(Abidemi et al., 2014;
Groth et al., 2020;
Hassini & Zouairi, 2011)

� Association Rule Mining
(Y. C. Wei et al., 2018)

� Decision Trees (Zhang
et al., 2017)

� Random Forests (Liang
et al., 2020; Zhang
et al., 2017)

� Analytic Hierarchy
Process (Wu et al.,
2011)

� Artificial Neural Network
(Yin et al., 2021)

� Hybrid Models (Ahmed
& Abraham, 2015; Guo
et al., 2017)

� Loss
Event Data

� Technical
System Data

� Environmental
Data

� Experts
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can greatly affect many dimensions of an organisa-
tion’s operational risk profile (e.g. employee and
customer health, home workplace safety, informa-
tion security in the remote work environment, sup-
ply chain (Actuaries Institute, 2020; Evans, 2020))
and the wider economy (McKibbin & Fernando,
2021). This systemic disruption and risk contagion
foregrounds the importance of multi-risk perspec-
tives in all sectors. Hence, the authors recommend
multi-risk perspectives persist in future research and
organisational practice.

Analytics objective: Much of the FS and ENR
research extends beyond backward-looking descriptive
investigations, which include text mining risks to form
taxonomies or detecting anomalies and non-confor-
mances in financial institutions’ systems. ENR studies
are predominantly diagnostic and predictive analyses
of accidents involving personnel or systems. Despite
the dominance of diagnostic studies determining what
factors cause risk events, few approaches attempt to
understand how causal factors influence an operational
risk profile. Such analysis could provide risk managers
with more precise insights to inform resource alloca-
tion for risk control, mitigation and monitoring. In
contrast, FS research is more advanced in quantifying
uncertainty and modelling dependencies between
operational risks across an organisation, with these
studies pioneering Bayesian networks for ORM (Neil
et al., 2005) and employing copula functions in trad-
itional statistical approaches (e.g. Peters et al., 2009).
These learnings from FS will be important as ENR

research progresses to understanding how risk profiles
change at more granular levels. Research into prescrip-
tive analytics for risk decision-making is immature
across both FS and ENR, noting some conceptual
developments, yet further research is required to oper-
ationalise such systems. This is not surprising given
fully autonomous systems are currently too black box
for most organisations and regulators.

Analytics techniques: Reflective of the analytics
objectives of focus for each sector, traditional statis-
tical techniques are mostly used in FS research (as
per capital regulation), whereas supervised statistical
and machine learning techniques are prevalent for
ENR. Additionally, relatively rudimentary methodol-
ogies, which lack discriminative and predictive
power, such as association rule mining and fault
and event tree analyses, are frequently employed for
safety and reliability analysis in ENR contexts.
Extending these tree-like PRA methodologies,
Bayesian networks are increasingly being used to
model operational uncertainties across both sectors.
Although a range of modelling techniques have
been investigated, few studies compare techniques
(e.g. Monish & Pandey, 2020; Yin et al., 2021).
Understanding the empirical and theoretical appro-
priateness of techniques across various contexts is
pivotal in attaining the most effective, efficient and
generalisable approach. Within studies, limited
emphasis is placed on model performance assess-
ment. Yet this is pertinent, particularly given height-
ening awareness and attention among practitioners

Table 9. Research perspectives in theme V: risk decision-making.
Theme V: risk decision-making

Research perspective
[Focus sector] Description and findings Study type

Risk
perspective

Analytics
objective Analytics techniques Data inputs

Automated Risk
Decision-making
Systems [FS, ENR]

� Prescribe the optimal action or
strategy, given knowledge of the
past, current and predicted
future states

� Few quantitative case studies
testing the application of these
theoretical models

Generic
Framework

Micro
Macro

Prescriptive Reward Maximisation
Methods

� Deep Reinforcement
Learning (El Bouchti
et al., 2017)

� Game Theory
(Rahmes et al., 2013)

� Loss Event Data
� Experts

Data-driven ORM
Framework
(Groth & Bensi, 2018;
Johnson, 2010;
Middleton & Sabeur,
2011; Wu, 2020)
[FS, ENR]

� Holistic, qualitative frameworks
for applying data analytics to
manage a specific operational
risk to ultimately inform risk
decision-making, with the
general structure of (i) a data
management architecture to
integrate disparate data sources,
(ii) a model-building module
aligned to the risk management
objective and (iii) interpretation
and visualisation of results

� Specified for specific risk contexts
and mostly tested on only one
case study, limiting
generalisability

� Do not consider multiple risk
events simultaneously

� Require considerable manual set
up and intervention by experts
with risk and data
analytics knowledge

Generic
Framework

Micro Descriptive
Diagnostic
Predictive
Prescriptive

� Classification
� Prediction
� Time-series Analysis
� Association Analysis
� Clustering
� Anomaly Detection

� Loss Event Data
� Technical System

Data
� Experts
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and regulators on model ethics and emerging tech-
nology risks. Researchers should consider evaluation
more along the lines of Dutta and Perry (2006) and
Xie et al. (2019).

Data inputs: Researchers have used a wide var-
iety of data and variables with loss data forming the
basis of the majority of studies, sourced from either
structured risk databases (typical of FS) or unstruc-
tured textual reports (common in ENR). FS applica-
tions largely rely on loss data and expert input,
whereas research using technical system, social and
organisational data is more prevalent in ENR.
Leveraging raw, continuously updated data in
organisations as in much of the existing ENR
research will be critical in the data-driven ORM
evolution, rather than relying on static, subjective
data elicited by experts. Only a small selection of
factors relating to technical system, organisational
structure, social and people or macro-environmental
aspects are considered simultaneously. If a wider set
of factors is considered (similar to Persona et al.
(2006) and Pence et al. (2014) who consider inci-
dent consequences, timing, technical system infor-
mation, organisational roles and peoples’
demographic characteristics), additional insights
about complex interconnections and leading indica-
tors may be uncovered. Extending the sample period
of factors to normal operating conditions, rather
than only at loss event times (i.e. in the spirit of
condition monitoring in ENR (e.g. Marquez et al.,
2020; Onoda et al., 2006 )), could provide a more
holistic and balanced representation of the operating
environment, and in turn more precise risk insights.

A final observation: Apart from the capital esti-
mation literature in banking, much of the research
in FS and particularly ENR is framed as a classifica-
tion problem, with a binary (e.g. “risk” or “no
risk”), multinomial (e.g. accident type) or ordinal
(e.g. “high”, “moderate” or “low” risk) response.
These discrete risk views linger from traditional
ORM practices – for example, likelihood-severity
risk matrices with qualitative scales lead to bucketed
risk ratings from which several risks with the same
rating cannot be differentiated (Ashley, 2020).
Operational risk lies, however, on a continuum of
both time and magnitude. Hence, quantifying it as a
continuous probability would provide more realistic
and detailed representations of dynamic operations.

This SLR’s comparison between FS and ENR
highlights opportunities for each sector to learn
from approaches applied by the other. Similarly,
common limitations and underdeveloped areas
across the sectors inform avenues for future
research. Figure 7 depicts the main research gaps on
the classification framework, and the following out-
line recommendations for future research across the
sectors reviewed.

� Building on the banking industry’s approach to
quantifying operational risk as a continuous
probability (e.g. Dutta & Perry, 2006), and com-
bining this perspective with ENR’s detailed causal
factors analysis (e.g. Moura et al., 2017; Pence
et al., 2020), further research is needed to better
understand how causal factors alter the probabil-
ity of an operational loss event.

Figure 7. Main areas for future research as per literature classification framework.
Note: The shaded elements of the framework highlight the current gaps in the research area. Various combinations of the shaded components across
the five layers would benefit from future research.
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� Most existing ORM solutions in FS and ENR are
static, such that their results reflect the risk at a
single time point. Pence et al. (2019), however,
introduced temporal dimensions to PRA. A
logical next step to fully benefit from data ana-
lytics is to develop dynamic learning systems that
reliably and repeatedly detect changes in risk
profiles. This extends to incorporating decision
and utility nodes into predictive frameworks, as
per El Bouchti et al.’s (2017) suggestion of
reinforcement learning, to enable prescriptive
analytics – live, actionable information on cur-
rent and emerging risks. A model, possibly
hybrid, with flexibility to adapt to environmental
changes and incorporate new risks without
extensive modification is of great value and war-
rants further research.

� Past operating conditions, and perhaps previous
risk levels, may inform the future level of risk.
Hence, research into techniques that allow for
time-series relationships and dependence
between risks and business processes, along the
lines of Nwafor et al. (2019), is still needed in
both sectors.

� Future research should investigate methods and
inputs that reduce the reliance on subjective,
expert-elicited data to avoid the requirement for
manual human intervention, limit human bias
and improve consistency. Methods may include
greater usage of raw operational and risk data as
in existing approaches within ENR (e.g. Yin
et al., 2021); leveraging near-miss data to more
objectively infer probability distributions; or con-
sidering ways to more reliably use expert input,
such as applying credibility weightings based on
the accuracy of expert estimates historically
(similar to Sanford and Moosa (2015)), using
experts to validate model predictions and incor-
porating this in a feedback loop, or other mecha-
nisms from expert elicitation literature. In
achieving this, researchers should be mindful of
the limitations of data-driven approaches, sur-
rounding inaccuracies when predicting risk
events that have historically occurred at low fre-
quencies (Milkau & Bott, 2018).

� In both sectors, studies comparing the perform-
ance of various techniques under a single oper-
ational context, like Monish and Pandey (2020),
are necessary to provide clarity of their relative

effectiveness. Establishing standardised metrics to
evaluate the performance of data-driven ORM
approaches and existing qualitative risk manage-
ment strategies would enhance comparability.

� Given existing research’s reliance on unstruc-
tured data, particularly in ENR, research extend-
ing existing work (e.g. ISO, 2016) should be
conducted to define systems and procedures for
more accurate, complete and efficient collection
and storage of operational and risk data. This
would better enable data-driven ORM solutions
to be developed and updated in practice.

Despite the nuances in how data analytics is
applied to ORM in FS and ENR, there are, however,
many similarities, which are largely reflected in the
core research themes. Indeed, the industry-agnostic
nature of the themes makes them generalisable
beyond FS and ENR8 (e.g. Rajesh, 2020a; 2020b).
They highlight to risk managers and researchers in
the field the key avenues through which organisa-
tions could benefit from data analytics in ORM.
Understanding this is critical given heightening reg-
ulations and standards surrounding effective ORM
across various industries. Table 10 summarises the
themes with respect to the analytics objectives and
techniques commonly applied. Taking this industry-
agnostic view, a myriad of research opportunities
exist to enhance the value of data-driven ORM
approaches to all organisations:

� The coverage of operational risks, operational
contexts and explanatory covariates needs to be
extended. This should culminate in an objective,
holistic data-driven ORM framework that consid-
ers the interconnectedness of risks across all
operational categories, as well as a broad set of
organisational and external factors. As with the
COSO and ISO ERM frameworks, such research
should develop a tool that is transferable within
and between industries. This research agenda is
strongly supported by academia and industry
(Azvine et al., 2007; Choi & Lambert, 2017).

� A core weakness across most of the literature is
the lack of implementation to real organisational
data. This is poignant given digital processes can
be scaled at near zero marginal cost, unlike trad-
itional manual document-based risk management
processes – a key advantage of data-driven ORM.

Table 10. Summary of research themes.
Research theme Analytics objective Analytics techniques

(i) Risk Identification Descriptive NLP, Clustering, Processing Mining
(ii) Causal Factors Diagnostic Association Rule Mining, Decision Tree, NLP, Bayesian Network
(iii) Risk Quantification Predictive, Diagnostic Traditional Statistical Distribution Fitting (LDA)
(iv) Risk Prediction Predictive ANN, Decision Tree, Association Rule Mining, Bayesian Network
(v) Risk Decision-making Prescriptive Deep Reinforcement Learning
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Seeking such opportunities should be a focus of
future research and will require cooperation with
industry partners. To aid in this, research will
need to translate conceptual models into com-
puter models and develop valuable visualisations
of results.

� When reflecting on the management of the
COVID-19 pandemic, it will provide an oppor-
tune stress test period to historically assess the
robustness and flexibility of data-driven ORM
solutions developed.

This paper has thoroughly reviewed the role of
data analytics within ORM across FS and ENR
through a methodical process. A novel classification
framework has conceptualised the area, highlighting
key insights about the methodologies and data in prior
research. Five core research themes have been pre-
sented, alongside future research recommendations to
advance ORM within and beyond FS and ENR.

Notes

1. The largest aggregate operational loss event categories
between 2014 and 2019, being Clients, Products &
Business Practices for banks and Execution, Delivery
& Process Management for insurers (Operational
Riskdata eXchange Association, 2020), reflect this
environment. As defined in the Basel II operational
loss event type classification, losses relating to Clients,
Products & Business Practices arise “from an
unintentional or negligent failure to meet a
professional obligation to specific clients (including
fiduciary and suitability requirements), or from the
nature or design of a product”, and losses relating to
Execution, Delivery & Process Management arise
“from failed transaction processing or process
management, from relations with trade counterparties
and vendors” (Basel Committee on Banking
Supervision, 2006).

2. Preliminary analysis on the full set of 2,538 references
retrieved from the initial literature review search
informed the high-level findings of the research
applying data analytics to risk management generally
presented in the introduction.

3. Supplementing Figure 4, a list of the references
included in the SLR with their relevant research
theme and classification framework assignment is
available upon request.

4. SoTeRiA stems from Rasmussen’s (1990) perspective
that bad outcomes are the result of normal
interactions between people and systems, rather than
human errors or deficiencies in human reliability (i.e.
there are structural problems in how humans operate
in large and complex systems).

5. The Basel II measurement methodologies include the
Basic Indicator Approach, the Standardised Approach
and the Advanced Measurement Approach (AMA)
(Basel Committee on Banking Supervision, 2006). In
response to the GFC, Basel III introduced a new
Standardised Measurement Approach (SMA), which
will be implemented in January 2023 (Basel
Committee on Banking Supervision, 2020), with the

aim to remove evaluation discretion associated with
the AMA (Basel Committee on Banking Supervision,
2010). The SMA also aggregates operational risks to
an organisational level, using a standard risk capital
charge formula with business size indicator and
internal loss multiplier components.

6. These percentages of references in the SLR for each
theme do not sum to 100% since not all references
were methodology articles developing or
implementing a specific model or framework, and
thus were not categorised into one of the five
research themes. The remaining 20% of references
were academic or industry review papers or
theoretical articles.

7. As per the Three Lines of Defence model – a best
practice framework for the systematic delegation and
coordination of risk management duties within an
organisation – the first line of defence is operational
management, whose function is to “own and manage
risks” (The Institute of Internal Auditors, 2013).

8. The generalisability of the themes to other sectors is
showcased in the original search results retrieved.
Studies from other industries, including industrials
(e.g. manufacturing and construction), aviation and
utilities (e.g. transportation, telecommunications and
water supply), were also prevalent and when
reviewed, related back the five core themes.
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Appendices

Appendix A: Systematic literature review
methodology details

Details of the SLR Searches

Search ID Search strategy Industry Database Search date
References
retrieved

SEA111ab TITLE-ABS-KEY ( (“data analy�” OR “machine learning”
OR “big data” OR “artificial intelligence” OR
“business intelligence” OR “data min�”) AND (“risk
manag�” OR “risk analy�” OR “risk framework” OR
“operational risk”) AND (“financial services” OR
bank� OR “financ� industry” OR “financ� sector”) )

FS Scopus 09/02/2021 431

SEA121a TITLE-ABS-KEY ( (“data analy�” OR “machine learning”
OR “big data” OR “artificial intelligence” OR
“business intelligence” OR “data min�”) AND (“risk
manag�” OR “risk analy�” OR “risk framework” OR
“risk decision” OR “operational risk”) AND
(“energy” OR “mining”) )

ENR Scopus 09/02/2021 1,476

SEA211 TOPIC: ( (“data analy�” OR “machine learning” OR
“big data” OR “artificial intelligence” OR “business
intelligence” OR “data min�”) AND (“risk manag�”
OR “risk analy�” OR “risk framework” OR “risk
decision” OR “operational risk”) AND (“financial
services” OR bank� OR “financ� industry” OR
“financ� sector” OR “energy” OR “mining”) )

FS, ENR Web of Science 09/02/2021 631

SEA000 Various General, FS, ENR Google Scholar
and Other

Various 35

aBecause of the maximum character restriction when searching Scopus, the search strategy was split by industry, such that two searches (SEA111
and SEA121) were conducted in Scopus.
bThe risk management search term “risk decision” was excluded from SEA111 on account of the maximum character restriction in Scopus. However,
the effect of its exclusion on the number of references retrieved from the search was tested for and none was found.

Stage 1 Cleaning Criteria
Inclusion criteria Exclusion criteria

(a) Study Objective: Application of data analytics technique(s) to
the process of managing risks.

(a) Study Objective:
� Broad discussion of a risk(s) with no application of a data analytics solution;
� Effect of risks or risk management practices on an organisation’s operations,

stability, or financial performance;
� Broad overview of the possible applications of data analytics, with risk

management mentioned only briefly;
� Specific modelling theory without practical application to a risk

management situation;
� Conference proceedings; or
� Review of a journal.

(b) At least one risk analysed was one of the following:
� Credit Risk (including bankruptcy, individual consumer

credit scores);
� Liquidity Risk;
� Market Risk;
� Operational Risk (including specific risk events, technology,

system or cyber security risks);
� Fraud;
� Reputational Risk;
� Safety Risk;
� External Risk;
� Emergency Risk or Crisis Management;
� Strategic Risk; or
� Supply Chain Risk.

(b) Highly specific and technical risk event, not outlined in Inclusion Criterion (b).

(c) Industry(ies) of application was at least one of the following:
� Financial Services (including banks, digital finance firms, or

insurers); or
� Energy (including mining, oil, gas, coal).

(c) Accessibility of Reference:
� Full-text not available; or
� Not written in English language.

Stage 2 Cleaning Criteria
Inclusion criteria Exclusion criteria

(a) Application of data analytic(s) technique to any
operational risk event/s (micro/specific or aggregate)
at an organisational level.

(a) Non-operational risks, including:
� Credit Risk (including bankruptcy, individual consumer credit scores);
� Liquidity Risk; and
� Market Risk.
(b) Analysis of community-wide, external risks, including:
� Community emergency management for natural disasters and terrorist

attacks; and
� Traffic management.
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